Lecture 7
Ana Bove

April 3rd 2017

Overview of today’s lecture:

o More on NFA;
o NFA with e-Transitions;
o Equivalence between DFA and e-NFA;

o Defined by a 5-tuple (Q, X, 4, qo, F);

o Why “non-deterministic” ?;

06:QxX — Pow(Q);

o Easier to define for some problems;

o Accept set of words x such that &(qo, x) N F # 0;

o Given a NFA N we apply the subset construction to get a DFA D ...
o ... such that L(N) = L(D);

o Hence, NFA also accept the so called regular language.

April 3rd 2017, Lecture 7 TMV027/DIT321 1/22

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below
has at least 2" states:

0,1
Q 1 . 0,1 . 0,1 071‘. 071‘0

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let £, = {xlu | x € X*,u€ X" '} and D = (Q, %, , qo, F) a DFA.

We want to show that if |Q| < 2" then L(D) # L,.

April 3rd 2017, Lecture 7 TMV027/DIT321 2/22

A Bad Case for the Subset Construction (Cont.)

Lemma: /fX = {0,1} and |Q| < 2" then there exist x,y € ¥* and
u,v € X"t such that 0(qo, x0u) = 0(qo, y1v).

Proof: Let us define a function h: ¥" — Q such that h(z) = §(qo, 2).
h cannot be injective because |Q| < 2" = |X"|.

So h sends 2 different words to the same image: a1...an # b1 ... b, but

h(al...a,,) = S(qo,al ...a,,) = S(qo,bl...bn) = h(blbn)

Let us assume that a; = 0 and b; = 1.
let x=a1...a1, y=b1...bi_1, u=ait1...2,07, v="bjy1...b,07 .
Hence (recall that for a DFA, §(q,zw) = §(8(q, z), w)):
5(qo, x0u) = 8(qo, a1 ... a,0""1) = 6(8(qo, a1 . ..an), 0 1) =
3(8(qo, b - .. bn),0"1) = 5(qo, b1 . .. b0"™) = 5(qo, y1v)

April 3rd 2017, Lecture 7 TMV027/DIT321 3/22

A Bad Case for the Subset Construction (Cont.)

Lemma: If |Q| < 2" then L(D) # L.

Proof: Assume L(D) = L,.
Let x,y € ¥* and u,v € ¥"! as in previous lemma.
Then, ylv € £L(D) but x0u ¢ L(D),

That is, 5(qo, y1v) € F but §(qo, x0u) ¢ F.

However, this contradicts the previous lemma that says that S(qO,XOU) = S(qo,ylv).

April 3rd 2017, Lecture 7 TMV027/DIT321 4/22

Product Construction for NFA

Definition: Given 2 NFA Ny = (@Q1,%,01, g1, F1) and
Ny = (@2, X, 62, g2, F2) over the same alphabet ¥, we define the product
N1 x Np = (Q, X, 9, qo, F) as follows:

0 Q= Q1 X Q;
0 6((p1, p2), @) = d1(p1, a) x 62(p2, a);
° qo = (91, q2);
o F=F x F».

Lemma: (t1, 1) € 0((p1, p2), x) iff t1 € 01(p1,x) and tp € da(po2, x).

Proof: By induction on x.

Proposition: £(N; x Ny) = L(N1) N L(N>).

April 3rd 2017, Lecture 7 TMV027/DIT321 5/22

Recall: Given 2 DFA D; and D, then £(D1 O] D2) = ,C(Dl) U [,(Dg)

Given 2 NFA N; and Ny, do we need to define Ny W N»?

Not really since union of languages can be modelled by the
nondeterminism!

April 3rd 2017, Lecture 7 TMV027/DIT321

OBS: Given NFA N = (Q,X,0,q,F) and N' = (Q,X,d,q,Q — F),
in general we do not have that L(N') = £* — L(N).

Example: Let ¥ = {a} and N and N’ as follows:

(=) - O L(N) = {a}
Q—‘ L(N') = {e} #5 — {a}

April 3rd 2017, Lecture 7 TMV027/DIT321 7/22

We could allow e-transitions: transitions from one state to another without
reading any input symbol.

Example: The following e-NFA searches for the keyword web and ebay:

April 3rd 2017, Lecture 7 TMV027/DIT321

Example: Let ¥ = {1}.

April 3rd 2017, Lecture 7 TMV027/DIT321 9/22

NFA with e-Transitions

Definition: A NFA with e-transitions (e-NFA) is a 5-tuple (Q, X, 4, qo, F)
consisting of:

Q A finite set Q of states;

Q A finite set X of symbols (alphabet);

Q A “partial” transition function 6 : Q@ x (X U {e}) = Pow(Q);
Q A start state qg € Q;

Q Aset F C Q of final or accepting states.

April 3rd 2017, Lecture 7 TMV027/DIT321 10/22

Exercise: e-NFA Accepting Decimal Numbers

Define a NFA accepting number with an optional +/- symbol and an
optional decimal part.

+,- . 0,1,..., 9 €

—qo || {q} | 0 0 {1}
q1 0 0 {g-2} 1)

q> 0 | {gs} {q2} {aa}
q3 1) 0 {qs} 1)
*Qa 0 0 {qa} 0

The e-transitions take care of the optional symbol + /- and the optional decimal part.

April 3rd 2017, Lecture 7 TMV027/DIT321 11/22

Informally, the e-closure of a state q is the set of states we can reach by
doing nothing or by only following paths labelled with e.

Example: For the automaton

the e-closure of qo is {qo, g1, g2, g3, qa }.

April 3rd 2017, Lecture 7 TMV027/DIT321

Definition: Formally, we define the e-closure of a set of states as follows:

o If g € S then g € ECLOSE(S);
o If g € ECLOSE(S) and p € 6(q,¢€) then p € ECLOSE(S).

Note: Alternative formulation

ge s qg € ECLOSE(S) p € 94(q,¢€)
q € ECLOSE(S) p € ECLOSE(S)

Definition: We say that S is e-closed iff S = ECLOSE(S).

April 3rd 2017, Lecture 7 TMV027/DIT321 13/22

o Intuitively, p € ECLOSE(S) iff there exists g € S and a sequence of
e-transitions such that

® ® - ©® ©®

o The e-closure of a single state g can be computed as ECLOSE({q});

o ECLOSE(0) = 0;

o Sis e-closed iff g € S and p € §(q, €) implies p € S.

Exercise: Implement the e-closure!

April 3rd 2017, Lecture 7 TMV027/DIT321

Definition: Given an e-NFA E = (Q, X, 6, qo, F) we define

5:Q x X — Pow(Q)
6(q,€) = ECLOSE({q})

3(q, ax) = UpeA(ECLOSE({q}),a) S(Pa x)
where A(S, a) = Upesd(p, a)

Remark: By definition, §(q, a) = ECLOSE(A(ECLOSE({q}), a)).

April 3rd 2017, Lecture 7 TMV027/DIT321

Language Accepted by a e-NFA

Definition: The /anguage accepted by the e-NFA (Q, X, 6, qo, F) is the set
L={xeX*|dqo,x)NF #£0D}.

Example: Let X = {b}.

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a e-NFA and let
the program tell us whether a certain string is accepted or not.

Exercise: Do it!
April 3rd 2017, Lecture 7 TMV027/DIT321 16/22

Example: Eliminating e-Transitions

Let us eliminate the e-transitions in e-NFA that recognises numbers in
slide 11.

We obtain the following DFA:

April 3rd 2017, Lecture 7 TMV027/DIT321 17/22

Eliminating e-Transitions

Definition: Given an e-NFA E = (Qg, X, g, e, FE) we define a DFA
D = (Qp,X,dp,qp, Fp) as follows:

o Qp = {ECLOSE(S) | S € Pow(QE)};

o 0p(S,a) = ECLOSE(A(S, a)) with A(S,a) = Upesd(p, a);
o gp = ECLOSE({qe});

o Fp={Se€Qp|SnFe#0}.

Note: This construction is similar to the subset construction but now we need to e-close

after each step.

Exercise: Implement this transformation!

April 3rd 2017, Lecture 7 TMV027/DIT321 18/22

Eliminating e-Transitions

Let E be an e-NFA and D the corresponding DFA after eliminating
e-transitions.

Lemma: Vx € ¥*. d£(qe, x) = 0p(qp, x).

Proof: By induction on x.

Proposition: £L(E) = L(D).

Proof: x € L(E) iff 6e(qe, x) N Fe # 0
iff cEE(qE,X) € Fp by definition of Fp
iff 0p(gp,x) € Fp by previous lemma

iff x € L(D).

April 3rd 2017, Lecture 7 TMV027/DIT321 19/22

We have shown that DFA, NFA and e-NFA are equivalent in the sense that
we can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA
or e-NFA) that accepts the language.

April 3rd 2017, Lecture 7 TMV027/DIT321

After completion of this course, the student should be able to:

Qo

Q

©

© 6 0 ©

Explain and manipulate the different concepts in automata theory and formal
languages;

Have a clear understanding about the equivalence between (non-)deterministic
finite automata and regular expressions;

Understand the power and the limitations of regular languages and context-free
languages;

Prove properties of languages, grammars and automata with rigorously formal
mathematical methods;

Design automata , regular expressions and context-free grammars accepting or
generating a certain language;

Describe the language accepted by an automata or generated by a regular
expression or a context-free grammar;

Simplify automata and context-free grammars;
Determine if a certain word belongs to a language;
Define Turing machines performing simple tasks;

Differentiate and manipulate formal descriptions of languages, automata and
grammars.

April 3rd 2017, Lecture 7 TMV027/DIT321

21/22

Sections 3.1, 3.4, 3.2.2:

o Regular expressions.
o Algebraic laws for regular expressions;
o Equivalence between FA and RE: from FA to RE.

Note: One of the methods is not in the book!

April 3rd 2017, Lecture 7 TMV027/DIT321 22/22

