
Re-Exam

Testing, Debugging, and Verification

TDA567/DIT082

DAY: 14 April 2015 TIME: 1400 − 1800

Responsible: Moa Johansson (0702 455 015)

Results: Will be published in May

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 23p, 3: 24 – 35p, 4: 36 – 47p, 5: 48 – 60p,
G: 24 – 47p, VG: 48 – 60p, Max. 60p.

Please observe the following:

• This exam has 8 numbered pages.
Please check immediately that your copy is complete

• Answers must be given in English
• Use page numbering on your pages
• Start every assignment on a fresh page
• Write clearly; unreadable = wrong!
• Fewer points are given for unnecessarily complicated solutions
• Read all parts of the assignment before starting to answer the first question.
• Indicate clearly when you make assumptions that are not given in the assignment

Good luck!

1





Re-exam/Omtenta TDA567/DIT082, 14 April 2015 3

Assignment 1 (Testing) (12p)

(a) Name, and describe precisely, the coverage criteria, related to source code, that
were described in the course.

(b) Describe in which way the various coverage criteria from (a) relate to each
other. Explain your answers.

(c) Explain what White Box and Black Box testing is, and how they differ from
one another.



Re-exam/Omtenta TDA567/DIT082, 14 April 2015 4

Assignment 2 (Debugging) (10p)

(a) Consider the following sequence of integer inputs: 0, 0, 0, 1, 1, 1, 0, 1.
We want to use the ddMin algorithm to find a small failing input subsequence.
An input sequence is failing if the number of 0s in it is the same as the number
of 1s.
Give one complete ddMin derivation for the above input. Motivate each step,
explaining what happens at each step as well as when and why the parameters
of the algorithm changes. A derivation without accompanying explanations
will not be given full marks.

(b) In the question (a), the ddMin algorithm was used to find a smaller failing
input sequence. State three reasons for why finding a small failing input is
relevant for debugging.



Re-exam/Omtenta TDA567/DIT082, 14 April 2015 5

Assignment 3 (Formal Specification) (15p)

Consider an implementation of a circular buffer storing integers in Dafny. A circular
buffer starts empty, with some predefined capacity, specifying how many elements it
can hold. The size field stores information about how many elements are currently
stored in the buffer. As the buffer is circular, it does not matter at which index in the
buffer we start inserting elements, this is given by the start field. Elements can then
be added one by one, as long as there is room in the buffer. Should we reach the end,
we simply wrap around and start inserting elements from the beginning of the buffer,
where there are still unallocated slots.

Below is a skeletal implementation of a class CircularBuffer:

class CircularBuffer{

var buffer : array<int>;

var capacity : int;

var size : int;

var start : int;

predicate Valid()

{ }

constructor(cap: int, startInd : int)

{ }

method Add(elem : int)

{

var i := start+size;

buffer[i%capacity] := elem;

size := size+1;

}

}

Continued on next page!



Re-exam/Omtenta TDA567/DIT082, 14 April 2015 6

(a) Your task is to add the specifications and implementations that are currently
missing, for Valid, the constructor method and the Add method, taking the
following into account:

• size is never negative, and always less than, or equal to, capacity.

• The value of capacity and buffer.Length should always be the same.

• The buffer field should never be null in a CircularBuffer object.

• There should be space for at least one element in the circular buffer.

• On initialisation, the startInd must be between 0 and capacity. The
newly allocated buffer contains only zeroes.

• As long as there is room in the buffer, i.e. size is strictly smaller than
capacity, the following must hold:

– Add increases the size by one.

– After calling Add(elem), elem is stored in the buffer at some valid
index.

(b) Now suppose that we want to add a method FindFirstOdd(). This method
should return the index of the first element in the buffer which is odd, counting
from index 0 (i.e. you do not need to take the start index into account here).
If there is no odd element in the buffer, it should return -1. Write down an
implementation with pre-conditions, post-conditions and invariants to ensure
it is correct.
method FindFirstOdd() returns (ind : int) {}



Re-exam/Omtenta TDA567/DIT082, 14 April 2015 7

Assignment 4 (Formal Verification) (13p)

Consider the following Dafny program:

method AlwaysEven(x : int) returns (y : int)

ensures y%2 == 0;

{

if (x%2 == 0)

{ y := x; }

else

{ y := (x-1);}

y := 2*y;

}

Next, suppose we want to run the following snippet of Dafny code:

method Test(){

var m := AlwaysEven(2);

var n := AlwaysEven(3);

assert m == n;

}

(a) The above code will cause a Dafny compiler error:

Error: assertion violation

Explain why.

(b) Fix AlwaysEven so that Dafny would be able to prove the assertion.

(c) Prove that your revised version of AlwaysEven satisfies its post-condition using
the weakest pre-condition calculus. Show all details of your proof and motivate
each step.

(d) Briefly explain what a loop invariant and a loop variant is, how they differ
and what they are used for in verification of programs.


