
Parsing Expressions

Slides by Koen Lindström Claessen & David Sands

Expressions

• Such as
– 5*2+12
– 17+3*(4*3+75)

• Can be modelled as a datatype

data Expr
= Num Int
| Add Expr Expr
| Mul Expr Expr

Showing and Reading

• We have seen how to write

• This lecture: How to write

showExpr :: Expr -> String

readExpr :: String -> Expr

Main> showExpr (Add (Num 2) (Num 4))
”2+4”
Main> showExpr (Mul (Add (Num 2) (Num 3)) (Num 4)
(2+3)*4

built-in show
function produces

ugly results

built-in read function
does not match

showExpr

Parsing
• Transforming a ”flat” string into something

with a richer structure is called parsing
– expressions
– programming languages
– natural language (swedish, english, dutch)
– ...

• Very common problem in computer
science
– Many different solutions

Parser libraries

• Haskell has many nice libraries that make

it easy to write parsers

– E.g. parsec included in the Haskell Platform:

http://hackage.haskell.org/package/parsec

• In this lecture we will do it from scratch

http://hackage.haskell.org/package/parsec

Expressions

• Let us start with a simpler problem
• How to parse

data Expr
= Num Int
| Add Expr Expr
| Mul Expr Expr

data Expr
= Num Int

but we keep in mind
that we want to parse

real expressions...

Parsing Numbers

number :: String -> Int

Main> number ”23”
23
Main> number ”apa”
?
Main> number ”23+17”
?

Parsing Numbers

• Parsing a string to a number, there are three
cases:
– (1) the string is a number, e.g. ”23”
– (2) the string is not a number at all, e.g. ”apa”
– (3) the string starts with a number, e.g. ”17+24”

how to model
these?

Case (1)
and (3) are

similar...

A Parser

String -> Maybe (a, String)

type Parser a = String -> Maybe (a, String)

A Parser for things is
a function from Strings
to Maybe a thing and

a String

G Hutton, Programming in Haskell

Parsing Numbers

• Parsing a string to a number, there are three
cases:
(1) the string is a number, e.g. ”23”

Just(23,””)

(2) the string is not a number at all, e.g. ”apa”
Nothing

(3) the string starts with a number, e.g. ”17+24”
Just(17,”+24”)

Parsing Numbers

number :: String -> Maybe (Int,String)

Main> number ”23”
Just (23, ””)
Main> number ”apa”
Nothing
Main> number ”23+17”
Just (23, ”+17”)

how to
implement?

number :: Parser Int

Case expressions
• We have seen many examples of pattern

matching in function definitions

Sometimes we just want to match on a local value
given by an expression
Use case expressions for this

rank (Card r _) = r

addPDF :: FilePath -> FilePath
addPDF s = case reverse (take 4 (reverse s)) of

“.pdf” -> s
_ -> s ++ “.pdf”

Note: cases must
have same indentation

Parsing Numbers

number :: Parser Int
number (c:s)
| isDigit c = Just (numb,rest)
| otherwise = Nothing
where
numb = read (takeWhile isDigit (c:s))
rest = dropWhile isDigit (c:s)

read :: String -> Int

or more generally

read :: Read a => String -> a

import Data.Char(isDigit)

Parsing Numbers

Main> num ”23”
Just (Num 23, ””)
Main> num ”apa”
Nothing
Main> num ”23+17”
Just (Num 23, ”+17”)

number :: Parser Int

num :: Parser Expr
num s = case number s of

Just (n, s’) -> Just (Num n, s’)
Nothing -> Nothing

a case
expression

The structure of expression strings

• An expression must be of the form

“t
1
 + t

2
 + … + t

m
”

• Each term t
i
 must be of the form

“f
1
 * f

2
 * … * f

n
”

• Each factor f
i
 must be a number

• We need four different parsers, one for each

category: expression, term, factor, number

One or more terms with

'+' between them

We're currently ignoring

parentheses

Parsing strategy

Each parser will eat as much of the input as “makes

sense” to it, and leave the rest untouched

– Parse “1*2+3asd” as an expression

• result: Add (Mul (Num 1) (Num 2)) (Num 3)

• rest: “asd”

– Parse “1*2+3asd” as a term

• result: Mul (Num 1) (Num 2)

• rest: “+3asd”

– Parse “1*2+3asd” as a factor

• result: Num 1

• rest: “*2+3asd”

Solves the problem of

where to split the string

Parsing example

• Parse “1+2” as an expression

– Should have the form “t
1
 + t

2
 + … + t

m
”, so we

start by looking for a term

• Parse “1+2” as a term

– Should have the form “f
1
 * f

2
 * … * f

n
”, so we

start by looking for a factor

• Parse “1+2” as a factor

– Should be a number

… continue on the next slide

Parsing example

• Parse “1+2” as a number

– Return the number and the rest of the string: (1,“+2”)

• The factor parser returns (Num 1, “+2”)

• The term parser returns (Num 1, “+2”)

• The expression parser now has hold of the first

term.

– Since the rest of the string starts with “+”, it goes on to

look for another term.

– Now the rest of the string is “”, so there are no more

terms, and it can return (Add (Num 1) (Num 2), “”)

The structure of expression strings

• An expression must be of the form

“t
1
 + t

2
 + … + t

m
”

• Each term t
i
 must be of the form

“f
1
 * f

2
 * … * f

n
”

• Each factor f
i
 must be a number

Expressions

• Expressions are now of the form
– ”23”
– ”3+23”
– ”17+3+23+14+0”

data Expr
= Num Int
| Add Expr Expr

a chain of numbers
with ”+”

Parsing Expressions

expr :: Parser Expr

Main> expr ”23”
Just (Num 23, ””)
Main> expr ”apa”
Nothing
Main> expr ”23+17”
Just (Add (Num 23) (Num 17), ””)
Main> expr ”23+17)”
Just (Add (Num 23) (Num 17), ”)”)

Parsing Expressions

expr :: Parser Expr
expr = ?expr :: Parser Expr

expr s1 = case num s1 of
Just (a,’+’: s2) -> case expr s3 of

Just (b,s4) -> Just (Add a b, s4)
Nothing -> Just (a, ’+’:s2)

r -> r

start with a
number?

continues with
a + sign?

can a parse
another expr?

Expressions

• Expressions are now of the form
– ”23”
– ”3+23*4”
– ”17*3+23*5*7+14”

data Expr
= Num Int
| Add Expr Expr
| Mul Expr Expr

a chain of terms
with ”+”

a chain of factors
with ”*”

Grammar for Expressions

• Parse Expressions according to the
following BNF grammar:

<expr> ::= <term> | <term> "+" <expr>
<term> ::= <factor> | <factor> "*" <term>
<factor> ::= "(" <expr> ")" | <number>

Parsing Expressions

expr :: Parser Expr
expr s1 = case term s1 of

Just (a,’+’:s2) -> case expr s2 of
Just (b,s3) -> Just (Add a b, s3)
Nothing -> Just (a, ’+’:s2)

r -> r

term :: Parser Expr
term = ?

Parsing Terms

term :: Parser Expr
term s1 = case factor s1 of

Just (a, ’*’:s2) -> case term s2 of
Just (b,s3) -> Just (Mul a b, s4)
Nothing -> Just (a,’*’:s2)

r -> r

a factor

a ”*” sign

term

Horrible cut-and-paste programming!
Better: abstract over the differences between
term and expr and make a more general
function

Parsing Chains

chain p op f s =
case p s of

Just (n,c:s') | c == op ->
case chain p op f s' of

Just (m,s'') -> Just (f n m,s'')
Nothing -> Just (n,c:s')

r -> r

expr, term :: Parser Expr
expr = chain term ’+’ Add
term = chain factor ’*’ Mul

Factor?
factor :: Parser Expr
factor = num

Parentheses

• So far no parentheses
• Expressions look like

– 23
– 23+5*17
– 23+5*(17+23*5+3)

a factor can be a
parenthesized

expression again

Factor?

factor :: Parser Expr
factor (’(’:s) =

case expr s of
Just (a, ’)’:s1) -> Just (a, s1)
_ -> Nothing

factor s = num s

Reading an Expr

readExpr :: String -> Maybe Expr
readExpr s = case expr s of

Just (a,””) -> Just a
_ -> Nothing

Main> readExpr ”23”
Just (Num 23)
Main> readExpr ”apa”
Nothing
Main> readExpr ”23+17”
Just (Add (Num 23) (Num 17))

Alternative number parsing

number :: Parser Int
number (c:s) | isDigit c = Just (n,s’)

where n = read $ takeWhile isDigit (c:s)
s’ = dropWhile isDigit s

number _ = Nothing

Summary

• Parsing becomes easier when
– Failing results are explicit
– A parser also produces the rest of the string

• Case expressions
– To look at an intermediate result

• Higher-order functions
– Avoid copy-and-paste programming

The Code (1)
readExpr :: String -> Maybe Expr
readExpr s = case expr s of

Just (a,””) -> Just a
_ -> Nothing

expr, term :: Parser Expr
expr = chain term ’+’ Add
term = chain factor ’*’ Mul

factor :: Parser Expr
factor (’(’:s) =

case expr s of
Just (a, ’)’:s1) -> Just (a, s1)
_ -> Nothing

factor s = num s

The Code (2)
chain p op f s =

case p s of
Just (n,c:s2) | c == op ->

case chain p op f s2 of
Just (m,s3) -> Just (f n m,s3)
Nothing -> Just (n,c:s2)

r -> r

number :: Parser Int
number (c:s) | isDigit c = Just (digits 0 (c:s))
number _ = Nothing

digits :: Int -> String -> (Int,String)
digits n (c:s) | isDigit c = digits (10*n + digitToInt c) s
digits n s = (n,s)

Testing readExpr

prop_ShowRead :: Expr -> Bool

prop_ShowRead a =

 readExpr (show a) == Just a

Main> quickCheck prop_ShowRead

Falsifiable, after 3 tests:

-2*7+3

negative

numbers?

Fixing the Number Parser

number :: Parser Int

number (c:s) | isDigit c = Just (digits 0 (c:s))

number ('-':s) = fmap neg (number s)

number _ = Nothing

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

neg :: (Int,String) -> (Int,String)

neg (x,s) = (-x,s)

This function is actually

overloaded. Works for many

types besides Maybe.

Testing again

Main> quickCheck prop_ShowRead

Falsifiable, after 5 tests:

2+5+3

Testing again

Main> quickCheck prop_ShowRead

Falsifiable, after 5 tests:

2+5+3

Add (Add (Num 2) (Num 5)) (Num 3)

Add (Num 2) (Add (Num 5) (Num 3))

“2+5+5”

show

read

Testing again

Main> quickCheck prop_ShowRead

Falsifiable, after 5 tests:

2+5+3

Add (Add (Num 2) (Num 5)) (Num 3)

Add (Num 2) (Add (Num 5) (Num 3))

“2+5+5”

show

read

+ (and *) are

associative

Fixing the Property (1)

prop_ShowReadEval :: Expr -> Bool

prop_ShowReadEval a =

 fmap eval (readExpr (show a)) == Just (eval a)

Main> quickCheck prop_ShowReadEval

OK, passed 100 tests.

The result does not have to be exactly the same,

as long as the value does not change.

assoc :: Expr -> Expr

assoc (Add (Add a b) c) = assoc (Add a (Add b c))

assoc (Add a b) = Add (assoc a) (assoc b)

assoc (Mul (Mul a b) c) = assoc (Mul a (Mul b c))

assoc (Mul a b) = Mul (assoc a) (assoc b)

assoc a = a

Fixing the Property (2)

prop_ShowReadAssoc :: Expr -> Bool

prop_ShowReadAssoc a =

 readExpr (show a) == Just (assoc a)

Main> quickCheck prop_ShowReadAssoc

OK, passed 100 tests.

non-trivial

recursion and

pattern matching

(study this definition

and what this

function does)

The result does not have to be exactly the same,

only after rearranging associative operators

Properties about Parsing

• We have checked that readExpr correctly

processes anything produced by

showExpr

• Is there any other property we should

check?

– What can still go wrong?

– How to test this?

Very difficult!

Summary

• Testing a parser:

– Take any expression,

– convert to a String (show),

– convert back to an expression (read),

– check if they are the same

• Some structural information gets lost

– associativity!

– use “eval”

– use “assoc”

