
Monads

Bonus lecture
2017

David Sands

do		
	putStr	“File	name?”		

	f	<-	getLine	

	c	<-	readFile	f	

	return	$	f	++	c	

do		
	n	<-	choose	(2,10)	

	r	<-	elements[Clubs,Spades]	

	return	$	Card	r	(Numeric	n)	

IO Gen

Our version of the story, so far….

Monad is the class of “instructions”. Instructions
can be built using “do” notation. We have seen two
kinds of instructions i.e. two instances of Monad:

IO vs Gen
Gen T

•  Instructions to create a
random value of type T

•  Run by the QuickCheck
library functions to perform
random tests

IO T

•  Instructions to build a value
of type T by interacting with
the operating system

•  Run by the ghc runtime
system

Repeating Instructions

Main>	doTwice	$	putStrLn	"hello”	
hello	
hello	
((),())	
Main>	

doTwice	i	=	
		do	a	<-	i	
					b	<-	i	
					return	(a,b)	

Repeating Instructions
doTwice	i	=	
		do	a	<-	i	
					b	<-	i	
					return	(a,b)	

Main>	sample	$	doTwice	(choose	(’a’,’z’))	
('m','c')	
('b','j')	
('h','l')	
('y','q')	
('k','f')	
('w','q')	
('p','h')	
Main>	

Monads = Instructions

•  What is the type of doTwice?

Main>	:t	doTwice	
doTwice	::	Monad	a	=>	a	b	->	a	(b,b)	

Whatever kind of result
it produces, we get a
pair of them Even the kind of instructions can vary.

Different kinds of instructions,
depending on who obeys them.

IO means operating
system.

Plan

1. One more example of a Monad:
–  Instructions for Parsing (a parsing library)

2. Rolling your own Monads
– The Truth about “do”
– The Parser Monad
– Maybe is also a Monad (and list, and...

A Simple Parsing Library

A library for building parsers containing:
•  An abstract data type Parser	a	
•  A function
parse	::	

Parser	a	->	String	->	Maybe	(a,String)	
	

•  Basic building blocks for building parsers

Example: Phone numbers

Two ways of writing phone numbers:
+46 317721000 0317721000

do			

	s	<-	getLine	

	c	<-	readFile	s	

	return	$	s	++	c	
do		

	n	<-	elements[1..9]	

	m	<-	vectorOf	n	arbitrary	

	return	$	n:m	

do		

	c	<-	sat	(`elem`	”;,:”)	

	ds	<-	chain	digit	(char	c)	

	return	$	map	digitToInt	ds	

IO

Gen

Parser

IO t
•  Instructions for

interacting with
operating
system

•  Run by GHC
runtime system
produce value
of type t

Gen t
•  Instructions for

building random
values

•  Run by

quickCheck to
generate
random values
of type t

Parser t
•  Instructions for

parsing

•  Run by parse to

parse a string
and produce a
Maybe (t,String)

Terminology

•  A “monadic value” is just an expression whose
type is an instance of class Monad

•  “t is a monad” means t is an instance of the
class Monad

•  We have often called a monadic value an
“instruction”. This is not standard terminology
– but sometimes they are called “actions”

Monads and do notation

•  To be an instance of class Monad you need
(as a minimal definition) operations >>= and
return
class	Monad	m	where	
		(>>=)	::	m	a	->	(a	->	m	b)	->	m	b	
		return	::	a	->	m	a	
	
		(>>)	::	m	a	->	m	b	->	m	b	
		x	>>	y	=	x	>>=	_	->	y	
	
		fail	::	String	->	m	a	
		fail	msg	=	error	msg	
		

Default implementations

Update, As of GHC 7.10

OK that’s a bit old school. Nowadays Monad is a
subclass of Applicative (which is a subclass of
Functor)

The class itself is a bit simpler – you just need to
define >>=

But I’ll define it the “old” way and ignore the rest

Boilerplate to make your monad an
instance of Applicative

import	Control.Applicative	(Applicative(..))	

import	Control.Monad(liftM,	ap)	

	

instance	Functor	MyMonad	where	fmap	=	liftM	

instance	Applicative	MyMonad	where	

				pure		=	return	

				(<*>)	=	ap	

See ”Learn you a Haskell…” for more info on
Functor and Applicative

The truth about Do

•  Do syntax is just a shorthand:

•  == ==

•  ==

do	act1	
			act2	 act1	>>	act2	 act1	>>=	_	->	act2	

do	v	<-	act1	
			act2	

act1	>>=	\v	->	act2	

The Parser Monad

•  To be an instance of class Monad you need
two operations: >>= and return

•  Why bother?

instance	Monad	Parser	where	
		return	=	succeed	
		(>>=)		=	(>*>)	
	

Our first example of a home-grown
monad
Can understand do notation

Example

The truth about Do
Full translation (I)

•  == =

•  ==
• 

 ==

do	act1	
			…		
			actn	

act1	>>	do	…		
											actn	
		

do	v	<-	act1	
			…	
			actn	

act1	>>=	\v	->	do	…		
																		actn	
	

do	actn	
				

actn	
				

The truth about Do

Full Translation (II): Let and pattern matching

•  == =

•  ==
• 

do	let	p	=	e	
			…		
			actn	

let	p	=	e	in		
do	…		
			actn	

do	pattern	<-	act1	
			…	
			actn	

	
let	f	pattern	=	do	…		
																		actn	
				f	_ 		=	fail	“Error”		
in		act1	>>=	f	
	

==

All three functions take a value (or no value) and
produce an IO “wrapped” value

The function >>= allows us to join them together

getLine >>= readFile >>= putStrLn

Maybe

Here is a function

They can be composed

Here is a function
 half	x		
				|	even	x	=	Just	(x	`div`	2)	
				|	odd	x		=	Nothing 	

What if we feed it a wrapped value?

We need to use >>= to shove our wrapped value into the function

>>=

>>=

>>=

>>=

>>=

Just	20	>>=	half	>>=	half	
>>=	half	

Instance Monad Maybe

•  Maybe is a very simple monad

Although simple it can be useful…

instance	Monad	Maybe	where	
			Just	x		>>=	k	=	k	x	
			Nothing	>>=	_	=	Nothing	
	
			return								=	Just	
			fail	s								=	Nothing	

		

Congestion Charge Billing

Congestion Charge Billing

Registration number used to find the
Personnummer of the owner
 carRegister	::	[(RegNr,PNr)]	
Personnummer used to find the name of the
owner
 nameRegister	::	[(PNr,Name)]	
Name used to find the address of the owner
addressRegister	::	[(Name,Address)]	

Example:
Congestion Charge Billing

type	CarReg	=	String	;	type	PNr	=	String			
type	Name	=	String	;	type	Address	=	String	
	
carRegister	::	[(CarReg,PNr)]	
carRegister	
	=	[("JBD	007","750408-0909"),	...]	
	
nameRegister	::	[(PNr,Name)]	
nameRegister		
	=	[("750408-0909","Dave“),	...]														
	
addressRegister	::	[((Name,PNr),Address)]	
addressRegister	=		
		[(("Dave","750408-0909"),"42	Streetgatan\n	Askim")	
		,	...]	
	

Example:
Congestion Charge Billing

billingAddress	::	CarReg	->	Maybe	(Name,	Address)	
billingAddress	car	=		
	case	lookup	car	carRegister	of	
			Nothing	->	Nothing	
			Just	pnr	->	case	lookup	pnr	nameRegister	of	
								Nothing	->	Nothing	
								Just	name	->		
											case	lookup	(name,pnr)	addressRegister	of	
																Nothing	->	Nothing	
																Just	addr	->	Just	(name,addr)	

With the help of
lookup	::	Eq	a	=>	a	->	[(a,b)]	->	Maybe	b	
we can return the address of car owners

Example:
Congestion Charge Billing

billingAddress	car	=	do	
		pnr		<-	lookup	car	carRegister		
		name	<-	lookup	pnr	nameRegister	
		addr	<-	lookup	(name,pnr)	addressRegister	
		return	(name,addr)	

Using the fact that Maybe is a member of class Monad
we can avoid the spaghetti and write:

Example:
Congestion Charge Billing

billingAddress	car	==	
	lookup	car	carRegister	>>=	\pnr	->		
	do		
		name	<-	lookup	pnr	nameRegister	
		addr	<-	lookup	(name,pnr)	addressRegister	
		return	(name,addr)	

Unrolling one layer of the do syntactic sugar:

•  lookup	car	carRegister	gives	Nothing	
then the definition of >>=	ensures that the whole
result is Nothing	
•  return	is	Just	

Summary

•  We can use higher-order functions to build
Parsers from other more basic Parsers.

•  Parsers can be viewed as an instance of
Monad

•  We have seen how we can build our own
Monads!
– A lot of ”plumbing” is nicely hidden away
– The implementation of the Monad is not visible

and can thus be changed or extended

IO t
•  Instructions for

interacting with
operating
system

•  Run by GHC
runtime system
produce value
of type t

Gen t
•  Instructions for

building random
values

•  Run by

quickCheck to
generate
random values
of type t

Parser t
•  Instructions for

parsing

•  Run by parse

to parse a
string and
Maybe produce
a value of type
t

+ Maybe = Four Monads

Code

•  Parsing.hs
– module containing the parser monad and simple

parser combinators.

See course home page

•  We can build our own Monads!
– A lot of ”plumbing” is nicely hidden away
– A powerful pattern, used widely in Haskell
– A pattern that can be used in other languages, but

syntax support helps
•  F# computation expressions
•  Scala

More examples

•  http://adit.io/posts/2013-06-10-three-useful-
monads.html

•  stack (slides/video from last year)

Another Example: A Stack

•  A Stack is a stateful object
•  Stack operations can push values on, pop

values off, add the top elements

type	Stack	=	[Int]	
newtype	StackOp	t	=	StackOp	(Stack	->	(t,Stack))	
	
--	the	type	of	a	stack	operation	that	produces		
--	a	value	of	type	t		
pop	::	StackOp	Int	
push	::	Int	->	StackOp	()		
add	::	StackOp	()	
	

Running a StackOp

type	Stack	=	[Int]	
newtype	StackOp	t	=	StackOp	(Stack	->	(t,Stack))	
	
run	(StackOp	f)	=	f	
	
--	run	(StackOp	f)	state	=	f	state	
	

Operations

Building a new StackOp…

swap	::	StackOp	()	
swap	=	StackOp	$	\s	->		
										let	(x,s')	=	run	pop	s	
														(y,s'')	=	run	pop	s'	
														(_,s''')	=	run	(push	x)	s''	
														(_,s'''')	=	run	(push	y)	s''’	
											in	(_,	s'''')	

No thanks!

StackOp is a Monad

•  Stack instructions for producing a value

So now we can write…

Maybe t
•  Instructions for

either
producing a
value or
nothing

•  Run by ?? (not
an abstract
data type)

Stack t
•  Stack

instructions
producing a
value of type t

•  Run by run

Two More Monads

 Pictures from a blog post about
functors, applicatives and monads

http://adit.io/posts/2013-04-17-
functors,_applicatives,_and_monads_in_pictures.html

 Aditya Y. Bhargava

