
What is the smallest value of counter, among those listed, after the
threads terminate?

int counter = 0;

thread t thread u

int cnt; int cnt;

1 for (int i = 0; i < 5; i++) {

2 cnt = counter;

3 counter = cnt + 1;

4 }

for (int i = 0; i < 5; i++) { 5

cnt = counter; 6

counter = cnt + 1; 7

} 8

1. 1

2. 5

3. 6

4. 10

30 / 43

What is the smallest value of counter, among those listed, after the
threads terminate?

int counter = 0;

thread t thread u

int cnt; int cnt;

1 for (int i = 0; i < 5; i++) {

2 cnt = counter;

3 counter = cnt + 1;

4 }

for (int i = 0; i < 5; i++) { 5

cnt = counter; 6

counter = cnt + 1; 7

} 8

1. 1

2. 5

3. 6

4. 10

30 / 43

The final value of counter is 5 when both threads read counter == 0,
one thread proceeds and increments it to 5, and the other thread
overwrites the same values up to 5.

But there are schedules where there is an even more destructive
interference between the two threads, so that the final value of
counter can be as low as 2!

t’S LOCAL u’S LOCAL SHARED

1 pct : 2 cntt : ⊥ pcu : 6 cntu : ⊥ counter : 0
2 pct : 2 cntt : ⊥ pcu : 7 cntu : 0 counter : 0
3 pct : 3 cntt : 0 pcu : 7 cntu : 0 counter : 0
4 pct : 3 cntt : 0 pcu : 6 cntu : 0 counter : 1
5 pct : 3 cntt : 0 pcu : 7 cntu : 1 counter : 1
6 pct : 3 cntt : 0 pcu : 6 cntu : 1 counter : 2
7 pct : 3 cntt : 0 pcu : 7 cntu : 2 counter : 2
8 pct : 3 cntt : 0 pcu : 6 cntu : 2 counter : 3
9 pct : 3 cntt : 0 pcu : 7 cntu : 3 counter : 3

10 pct : 3 cntt : 0 pcu : 6 cntu : 3 counter : 4
11 pct : 2 cntt : 0 pcu : 6 cntu : 3 counter : 1
12 pct : 2 cntt : 0 pcu : 7 cntu : 1 counter : 1
13 pct : 3 cntt : 1 pcu : 7 cntu : 1 counter : 1
14 pct : 2 cntt : 1 pcu : 7 cntu : 1 counter : 2
15 pct : 3 cntt : 2 pcu : 7 cntu : 1 counter : 2
16 pct : 2 cntt : 2 pcu : 7 cntu : 1 counter : 3
17 pct : 3 cntt : 3 pcu : 7 cntu : 1 counter : 3
18 pct : 2 cntt : 3 pcu : 7 cntu : 1 counter : 4
19 pct : 3 cntt : 4 pcu : 7 cntu : 1 counter : 4
20 done pcu : 7 cntu : 1 counter : 5
21 done done counter : 2

31 / 43

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(1); // capacity 1

thread tk

int x;

1 s.down();

2 x = n;

3 n = x + 1;

4 s.up();

1. Between 1 and 8

2. Between 4 and 8

3. Always 4

4. Always 8

32 / 43

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(1); // capacity 1

thread tk

int x;

1 s.down();

2 x = n;

3 n = x + 1;

4 s.up();

1. Between 1 and 8

2. Between 4 and 8

3. Always 4

4. Always 8

32 / 43

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(2); // capacity 2

thread tk

int x;

1 s.down();

2 x = n;

3 n = x + 1;

4 s.up();

1. Between 1 and 8

2. Between 4 and 8

3. Always 4

4. Always 8

33 / 43

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(2); // capacity 2

thread tk

int x;

1 s.down();

2 x = n;

3 n = x + 1;

4 s.up();

1. Between 1 and 8
2. Between 4 and 8
3. Always 4
4. Always 8

The value 1 occurs if one thread t reads 0 initially, and then waits
inside its critical section, while the other threads go through their
critical section in mutual exclusion. Then, t finishes by writing 1, thus
overwriting the increments of all other threads.

33 / 43

What do threads continuously calling x() and y() print?

monitor class CountPrint {

private Condition isX = new Condition();

private Condition isY = new Condition();

public void x()

{ isX.wait(); System.out.print("X"); isY.signal(); }

public void y()

{ isY.wait(); System.out.print("Y"); isX.signal(); }

}

1. A sequence of alternating X and Y.

2. The first answer, if the monitor uses “signal and wait”.

3. The first answer, if the monitor uses “signal and continue”.

4. The program deadlocks.

34 / 43

What do threads continuously calling x() and y() print?

monitor class CountPrint {

private Condition isX = new Condition();

private Condition isY = new Condition();

public void x()

{ isX.wait(); System.out.print("X"); isY.signal(); }

public void y()

{ isY.wait(); System.out.print("Y"); isX.signal(); }

}

1. A sequence of alternating X and Y.

2. The first answer, if the monitor uses “signal and wait”.

3. The first answer, if the monitor uses “signal and continue”.

4. The program deadlocks.

34 / 43

What do threads continuously calling x() and y() print?

monitor class CountPrint {

private Condition isY = new Condition();

public void x()

{ System.out.print("X"); isY.signal(); }

public void y()

{ isY.wait(); System.out.print("Y"); }

}

1. A sequence with at least one X between every pair of Y.

2. The first answer, if the monitor uses “signal and wait”.

3. The first answer, if the monitor uses “signal and continue”.

4. The program deadlocks.

35 / 43

What do threads continuously calling x() and y() print?

monitor class CountPrint {

private Condition isY = new Condition();

public void x()

{ System.out.print("X"); isY.signal(); }

public void y()

{ isY.wait(); System.out.print("Y"); }

}

1. A sequence with at least one X between every pair of Y.

2. The first answer, if the monitor uses “signal and wait”.

3. The first answer, if the monitor uses “signal and continue”.

4. The program deadlocks.

Under “signal and continue”, it is possible that two unblocked calls to
y() get in the entry queue and then execute one after another.

35 / 43

Thread t is adding a node m while locking node k. How can this
operation go wrong?

head e k

µ

p w tail

1. Another thread may add a node n before m

2. Another thread may add a node g before k

3. Another thread may remove node k

4. Another thread may invalidate node k

36 / 43

Thread t is adding a node m while locking node k. How can this
operation go wrong?

head e k

µ

p w tail

1. Another thread may add a node n before m

2. Another thread may add a node g before k

3. Another thread may remove node k

4. Another thread may invalidate node k

36 / 43

Thread t is removing node p while locking node k. How can this
operation go wrong?

head e k

µ

p w tail

1. Another thread may add a node m after k

2. Another thread may add a node q after p

3. Another thread may remove node w

4. Another thread may add a node g before k

37 / 43

Thread t is removing node p while locking node k. How can this
operation go wrong?

head e k

µ

p w tail

1. Another thread may add a node m after k

2. Another thread may add a node q after p

3. Another thread may remove node w

4. Another thread may add a node g before k

37 / 43

What does twice([1,2,3,4]) return?

twice([]) -> [];

twice([H|T]) -> [2*H|twice(T)].

1. [1,2,3,4]

2. [4,3,2,1]

3. [2,4,6,8]

4. [2,2,2,2]

38 / 43

What does twice([1,2,3,4]) return?

twice([]) -> [];

twice([H|T]) -> [2*H|twice(T)].

1. [1,2,3,4]

2. [4,3,2,1]

3. [2,4,6,8]

4. [2,2,2,2]

38 / 43

What does mtwice([1,2,3,4]) return?

mtwice(L) -> map(fun (X) -> 2*X end, L).

1. [2,4,6,8]

2. [2,2,2,2]

3. The list [2,4,6,8] with the elements in any order

4. The list [1,2,3,4] with the elements in any order

39 / 43

What does mtwice([1,2,3,4]) return?

mtwice(L) -> map(fun (X) -> 2*X end, L).

1. [2,4,6,8]

2. [2,2,2,2]

3. The list [2,4,6,8] with the elements in any order

4. The list [1,2,3,4] with the elements in any order

39 / 43

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {self(), 1},

Q ! {self(), 2},

Q ! {self(), 3}.

q() -> % P is P’s pid

receive {P, N} ->

io:format("~p", [2*N]) end,

q().

1. The numbers 1, 2, 3 in any order

2. The numbers 2, 4, 6 in any order

3. The numbers 1, 2, 3 in this order

4. The numbers 2, 4, 6 in this order

40 / 43

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {self(), 1},

Q ! {self(), 2},

Q ! {self(), 3}.

q() -> % P is P’s pid

receive {P, N} ->

io:format("~p", [2*N]) end,

q().

1. The numbers 1, 2, 3 in any order

2. The numbers 2, 4, 6 in any order

3. The numbers 1, 2, 3 in this order

4. The numbers 2, 4, 6 in this order

40 / 43

What does process R print?

process P process Q process R

p() ->

R ! x,

p().

q() ->

R ! y,

q().

r() ->

receive

x -> io.format("X");

y -> io.format("Y")

end,

r().

1. The sequence XYXYXY....

2. The sequence YXYXYX....

3. Any sequence of letters X and Y.

4. Any sequence of uppercase letters.

41 / 43

What does process R print?

process P process Q process R

p() ->

R ! x,

p().

q() ->

R ! y,

q().

r() ->

receive

x -> io.format("X");

y -> io.format("Y")

end,

r().

1. The sequence XYXYXY....

2. The sequence YXYXYX....

3. Any sequence of letters X and Y.

4. Any sequence of uppercase letters.

41 / 43

What does process R print?

process P process Q process R

p() ->

R ! x,

p().

q() ->

R ! y,

q().

r() ->

receive

x -> io.format("X")

end,

receive

y -> io.format("Y")

end,

r().

1. The sequence XYXYXY....

2. The sequence YXYXYX....

3. Any sequence of letters X and Y.

4. Any sequence of uppercase letters.
42 / 43

What does process R print?

process P process Q process R

p() ->

R ! x,

p().

q() ->

R ! y,

q().

r() ->

receive

x -> io.format("X")

end,

receive

y -> io.format("Y")

end,

r().

1. The sequence XYXYXY....

2. The sequence YXYXYX....

3. Any sequence of letters X and Y.

4. Any sequence of uppercase letters.
42 / 43

What does ptwice([1,2,3,4], [], 4) return?

ptwice([], R, 0) ->

R;

ptwice([], R, N) ->

receive X -> ptwice([], [X|R], N-1) end;

ptwice([H|T], R, N) ->

Me = self(),

spawn(fun ()-> Me ! 2*H end),

ptwice(T, R, N).

1. [2,4,6,8]

2. [8,6,4,2]

3. The list [2,4,6,8] with the elements in any order

4. The list [1,2,3,4] with the elements in any order

43 / 43

What does ptwice([1,2,3,4], [], 4) return?

ptwice([], R, 0) ->

R;

ptwice([], R, N) ->

receive X -> ptwice([], [X|R], N-1) end;

ptwice([H|T], R, N) ->

Me = self(),

spawn(fun ()-> Me ! 2*H end),

ptwice(T, R, N).

1. [2,4,6,8]

2. [8,6,4,2]

3. The list [2,4,6,8] with the elements in any order

4. The list [1,2,3,4] with the elements in any order

Each send is executed by a different spawned process; hence there
is no guarantee on the receiving order.

43 / 43

