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ASSIGNING MEANINGS TO PROGRAMS1 

Introduction. This paper attempts to provide an adequate basis for 
formal definitions of the meanings of programs in appropriately defined 
programming languages, in such a way that a rigorous standard is established 
for proofs about computer programs, including proofs of correctness, 
equivalence, and termination. The basis of our approach is the notion of 
an interpretation of a program: that is, an association of a proposition 
with each connection in the flow of control through a program, where the 
proposition is asserted to hold whenever that connection is taken. To prevent 
an interpretation from being chosen arbitrarily, a condition is imposed on 
each command of the program. This condition guarantees that whenever 
a command is reached by way of a connection whose associated proposition 
is then true, it will be left (if at  all) by a connection whose associated 
proposition will be true at  that time. Then by induction on the number of 
commands executed, one sees that if a program is entered by a connection 
whose associated proposition is then true, it will be left (if a t  all) by a 
connection whose associated proposition will be true a t  that time. By this 
means, we may prove certain properties of programs, particularly properties 
of the form: "If the initial values of the program variables satisfy the 
relation Ri, the final values on completion will satisfy the relation Rs." 
Proofs of termination are dealt with by showing that each step of a program 
decreases some entity which cannot decrease indefinitely. 

These modes of proof of correctness and termination are not original; 
they are based on ideas of Perlis and Gorn, and may have made their 
earliest appearance in an unpublished paper by Gorn. The establishment 
of formal standards for proofs about programs in languages which admit 
assignments, transfer of control, etc., and the proposal that the semantics 
of a programming language may be defined independently of all processors 
for that language, by establishing standards of rigor for proofs about 
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1 program. Figure 1 gives an example of an interpretation. For any edge e, 

For any command c with k entrances and I exits, we will designate the 
entrances to c by a1,a2, .,ah, and the exits by bl,  62, . -, 6,. We will 
designate the tag of a, by Pi (1 5 i A),  and that of bi by Qi (1 s i <: I ) .  
Boldface letters will designate vectors formed in the natural way from 
the entities designated by the corresponding nonboldface letters: for 
example, P represents (Pi,  P2, . - . , Pk) . 

A verification of an interpretation of a flowchart is a proof that for every 
command c of the flowchart, if control should enter the command by an 
entrance a, with Pi true, then control must leave the command, if at  all, 
by an exit b, with Q, true. A semantic definition of a particular set of command 
types, then, is a rule for constructing, for any command c of one of these 
types, a verification condition Vc(P; Q) on the antecedents and consequents 
of c. This verification condition must be so constructed that a proof that 
the verification condition is satisfied for the antecedents and consequents 
of each command in a flowchart is a verification of the interpreted flowchart. 
That is, if the verification condition is satisfied, and if the tag of the entrance 
is true when the statement is entered, the tag of the exit selected will be 
true after execution of the statement. 

A counterexample to a particular interpretation of a single command is 
an assignment of values (e.g., numbers in most programming languages) 
to the free variables of the interpretation, and a choice of entrance, such 
that on entry to the command, the tag of the entrance is true, but on exit, 
the tag of the exit is false for the (possibly altered) values of the free 
variables. A semantic definition is consistent if there is no counterexample 
to any interpretation of any command which satisfies its verification 
condition. A semantic definition is complete if there is a counterexample 
to any interpretation of any command which does not satisfy its verification 
condition. A semantic definition clearly must be consistent. Preferably, it 
should also be complete; this, however, is not always possible. 

In what follows, we shall have in mind some particular deductive system 
D, which includes the axioms and rules of inference of the first-order 
predicate calculus, with equality. We shall write @,, @2, . . , @,,I- 'I' to mean 
that 'I' is a proposition deducible from a2, . a . ,an and the axioms of D 

-by the rules of inference of D. We shall designate by 

he result of simultaneously substituting fi for each occurrence of xi in 
, after first systematically changing bound variables of $ to avoid conflict 
4th free variables of any f i .  
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Taking this as the semantic definition of x t f ( x , y ) ,  and assuming the 
completeness and consistency of the deductive system D, we show that the 
semantic definition is complete and consistent. 

To show consistency, assume that xi and yi are initial values of x and y 
such that \- R(xi,~i). Then after execution of x t f (x, y), the values x2 and 
y2 are such that x = x2 = /(xi, yl), y = yz = yl; thus xz = f (XI, yJ A R(x1, y2), 
or (3  XO) (x2 = f (XO, YZ) A R ( ~ o ,  ~2) ) .  Designating (3x0) (x = f(xo, y) A R(xo, y)) 
as Tc(R(x, y)), we have shown that upon exit from c, S~yz (Tc(R(x ,  y))) 
is true. Now since Tc(R(x, y)) I- Q, we find I- S:iY2(Q), by the assumption 
of the consistency of D, so that Vc is consistent. 

To show completeness, assume it false that Tc(R(x,y)) I- Q. Then, 
by the completeness of D, there is a set of values x2 and yz for x and 
y such that SiÂ¥/Ã£(Tc(R( y))) is true, but Szy2 (Q) is false. Thus, 
( 3  xo) (x2 = f (;Ãˆ<) ya) A R(xo, y2)). Let x1 be a particular value of x0 for which 
x2 = f (xl, y2) A R(xl, yi). Now using xl and yz as initial values for x and 
y, we may generate a counterexample to the interpretation I(al) = R(x,y), 
I(b1) = Q. 

Thus we have shown that Vc is complete (consistent) if D is complete 
(consistent). By consideration of vacuous statements such as x <Ã x, we 
could change each "if" to "if and only if." Thus, the semantic definition 
(1) we have given is the natural generalization of the original sufficient 
condition for verification; V, is both necessary and sufficient. 

The other command types of Figure 2 are more easily dealt with. For 
the branch command, Vc(Pi; Ql, Q2) is (PI A Ã§i Qh A (Pi A +I- Q2). 
For the join command, Vc(Pl, P2; Ql) is (Pi V Poh Ql). For the start com- 
mand the condition Vc(Ql), and for the halt command the condition Vc(Pl) 
are identically true. All of these semantic definitions accord with the usual 
understanding of the meanings of these commands, and in each case Vc is 
complete and consistent if D is. 

Using these semantic definitions, it is not hard to show that Figure 1 
is a verifiable interpretation of its flowchart provided D contains a suitable 
set of axioms for the real numbers, summation, the integers, inequalities, 
and so forth. Thus, if the flowchart is entered with n a positive integer, the 
value of i on completion will be n + 1 (assuming that the program terminates) 
and the value of S will be x,"=l a,. Presumably, the final value of i is of no 
interest, but the value of S is the desired result of the program, and the 
verification proves that the program does in fact compute the desired result 
if it terminates a t  all. Another section of this paper deals with proofs of 

Each of the given semantic definitions of the flowchart commands takes 
the form that Vc(P,Q) if and only if (T,(P) I- Ql)A. .A(T,(P) t- Q;), 
where T, is of the form Tl1(Pl) V TJP2) V - - V T,h(Pk). In particular 
there is the following: 
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(3) For a join command 

(4) For a start command, Ti( ) is false. 
Thus, Vc(Ql) is identically true. 

(5) For a halt command, the set of T/s and Q/s is empty. 

For any set of semantic definitions such that 
I I I 

in any verifiable interp etation, it is possible to substitute Tj(P) for 6 -  
as a tag for any parti d lar exit of a command without loss of verifiability. 
It is obvious that this substitution satisfies the semantic definition of the 

there are no other commands whose verification condition involves I(b,) .  
i 
1 

I t  is, therefore, possible to extend a partially specified interpretation 
to a complete interpretation, without loss of verifiability, provided that 
initially there is no closed loop in the flowchart all of whose edges are not 
tagged and that there is no entrance which is not tagged. This fact offers 
the possibility of automatic verification of programs, the programmer 
merely tagging entrances and one edge in each innermost loop; the verifying 
program would extend the interpretation and verify it, if possible, by 
mechanical theorem-proving techniques. 

1 We shall refer to Tc(P) as the strongest verifiable consequent of the command 
c, given an antecedent P. I t  seems likely that most semantic definitions 
in programming languages can be cast into the form V,.(P, Q) = (Tc(P) I- Q), 
where Tc has several obvious properties: 

I (1) If P 3 PI, Tc(P) 3 Tc(Pi) 
(2) If upon entry by entrance ai with initial values V, a command i 

executed and left by exit bj with final values W, then Tc(P) = Q, wher 
Pa is defined as false for a # i, X = V for a = i, and Qn is defined as fals 



(3) If P = Pl A P2, Tc(P) = Tc(Pl) A Tc (Pa. 
If P = Pi VP2, Tc(P) = Tc(Pi) VTc(P&. 
If P = (3x)(Pl), Tc(P) = (3x)(Tc(Pl)). 

That is, the transformation Tc distributes over conjunction, disjunction, 
and existential auantification. A semantic definition having these orooerties 

I syntax for the language, such as the existing syntactic definition of ALGOL; 1 

Let us say that each statement 2 in an ALGOLic language is tagged with 
an antecedent and a consequent proposition (Ps and Qv respectively), 
said to hold whenever control enters and leaves the statement in the normal 
sequential mode of control. 

Now we may readily set up a verification condition for each common 
statement type. 

(1) If 2 is an assignment statement, x :  = f ,  then 

Vz(Ps;Qz) is (3xo)(Sw(Pz)Ax=S&(f)) \ -Qs. 
This assumes for simplicity that f is a true function of its free variables 
and has no side effects. 

(2) If S is a conditional statement of the form if a then Zl else Sz, 

Vs(P2, Qsi, QZ2; Pxl, Ps2, Qs) is (Pz A @I- Pzl) 

A ( P z  A -I *I- Pw) A (Qsl V Qz2 I- Qs). 
Observe that here the exits of Z1 and So become entrances to 2,  and so on. 

26 

satisfies Axioms 1-4. 

An ALGOL subset. To apply the same notions to a conventional pro- 
gramming language on the order of ALGOL, one might adopt a formal 

designate certain phrase types as semantic units, such as the statements 
in ALGOL; and provide semantic definitions for these semantic units. 

2 



The strongest verifiable proposition Pa on edge a is 

( 3 x o )  (S;o(P,) A x = Sio(a)). 

The strongest verifiable proposition Pn on edge f )  is 

( ~ ^ O ) ( S ~ ~ ( Q ~ ~ )  A x  = XO+ (Sio(fc)), 







(4) (S:=((S~)~+SA):((S~)~)):(~S")(~S)(S= ( ( s " t ) h + S " A ) :  

((sMt),) ASff = 1: (c:.(c:S/)) AP(a,c ,Sf))  
which simplifies, by application of the equation S" = 1 : (c : (c : S')), to 
( 3 S') (S = (c + 1) : (c : S W ( a ,  c, St)). 

(5) (c : = Sh) : ( 3 ~ ' )  (3s ' )  (c = Sh A S = (c' + 1) : (c': S') A P(a, c', 23')). 
Noting that Sh = cf + 1, or c' = Sh - 1 = c - 1, this becomes 
( 3 S ' ) ( S = c :  (c- l : S ' ) A P ( a , c -  1 ,s ' ) ) .  

J 
. . . .. 

(9) ( a : = S h ) : ( 3 a f ) ( 3 S ' ) ( a = S ^ S = 3 c -  1 :S 'AP(a f , c -  l ,Sf)) ,  or 
(3af ) (3s ' ) (a=  3c- l A s =  3c- l :S 'AP(at ,c-1,s ' ) )  

(10) ( S t s t ) :  ( ~ S ' ' ) ( ~ ~ ' ) ( ~ S ' ) ( S = S { ' A ~ = ~ C -  1 A S =  3c- 1:s' 
/\ P(a', c - 1, S')), or 

(3af ) ( jS ' ) (S  = S' A a  = 3c - 1 A P(a',c - l,S')), or 
(3af)(a  = 3c - l A  P(a,c - 1 , s ) ) .  

For this statement, then, the condition of verification V,. (P(a, c, S) ; Q) 

i 
is ((3a') (a = 3c - 1 AP(a ' ,  c - 1, S))) I- Q, which is exactly the verification 
condition for either of 

Beginc:=c+l;  a : = 3 c Ã ‘ 1 e n  

and 

Begina:=3c+2; c : = c + l e n d .  

Thus, the three statements are shown to be precisely equivalent, at  least 
under the axioms (of exact arithmetic, etc.) used in the proof. 

Proofs of termination. If a verified program is entered by a path whose 
tag is then true, then a t  every subsequent time that a path in the program 
is traversed, the corresponding proposition will be true, and in particular I 
if the program ever halts, the proposition on the path leading t o  the selected 
exit will be true. Thus, we have a basis for proofs of relations between 
input and output in a program. The attentive reader, however, will have 
observed that we have not proved that an exit will ever be reached; the 
methods so far described offer no security against nonterminating loops. 
To some extent, this is intrinsic; such a program as, for example, a me- 

I chanical proof procedure, designed to recognize the elements of a recursively 
enumerable but not recursive set, cannot be guaranteed to terminate without 

'1 a fundamental loss of power. Most correct programs, however, can be 
proved to terminate. The most general method appears to use the properties 
of well-ordered sets. A well-ordered set W is an ordered set in which each I 



nonempty subset has a least member; equivalently, in which there are no 
infinite decreasing sequences. 

Suppose, for example, that an interpretation of a flowchart is supple- 
mented by associating with each edge in the flowchart an expression for 
a function, which we shall call a W-function, of the free variables of the 
interpretation, taking its values in a well-ordered set W. If we can show 
that after each execution of a command the current value of the W-function 
associated with the exit is less than the prior value of the W-function asso- 
ciated with the entrance, the value of the function must steadily decrease. 
Because no infinite decreasing sequence is possible in a well-ordered set, 
the program must sooner or later terminate. Thus, we prove termination, 
a global property of a flowchart, by local arguments, just as we prove the 
correctness of an algorithm. 

To set more precisely the standard for proofs of termination, let us in- 
troduce a new variable 6, not used otherwise in an interpreted program. 
Letting W designate the well-ordered set in which the W-functions are 
to be shown decreasing, and letting @ be the ordering relation of W, it 
is necessary to prove for a command c whose entrance is tagged with 
proposition P and W-function 4, and whose exit is tagged with proposition 
Q and W-function + that 

v ~ ( P A ~ = < ~ > A < ~ > â ‚ ¬ W Q A  6 A + â ‚ ¬ W  

Carrying out this proof for each command in the program, with obvious 
generalizations for commands having multiple entrances and exits, suffices 
not only to verify the interpretation, but also to show that the program 
must terminate, if entered with initial values satisfying the tag of the 
entrance. 

The best-known well-ordered set is the set of positive integers, and the 
most obvious application of well-orderings to proofs of termination is to 
use as the W-function on each edge a formula for the number of program 
steps until termination, or some well-chosen upper bound on this number. 
Experience suggests, however, that it is sometimes much more convenient 
to use other well-orderings, and it may even be necessary in some cases. 
Frequently, an appropriate well-ordered set is the set of n-tuples of positive 
(or nonnegative) integers, for some fixed n, ordered by the assumption 
that ( ! ' * , i t , - - - , i n ) @ ( j 1 , j 2 , - - - , j n )  if, for some k , i i = ~ l , i 2 = j 2 , - - - , i k - 1  
= J&-~,  ik < jk, 1 5 k 5 n. The flowchart of Figure 5 shows an interpreta- 
tion using this well-ordering. for n = 2. to Drove termination. I t  is assumed 




