
Database Tutorial 6: XML, DTDs, XPath, XQuery

2015-01-27

1 Repetition

1.1 XML

• Tree structure

• Opening and closing Tags

• Case-sensitive

• Elements, Attributes and Text elements

Example:

<?xml version="1.0" standalone="yes" ?>

<!-- put the DTD here -->

<Hogwarts>

<Rooms>

<Room name="The_Dungeon" nrSeats="34" />

<Room name="The_Cabin" nrSeats="163" />

</Rooms>

<Teachers>

<Teacher name="Snape" room="The_Dungeon" >

<Title>Professor</Title>

</Teacher>

<Teacher name="Hagrid" room="The_Cabin" />

</Teachers>

<Courses>

<Course name="Potioncraft" teacher="Snape" nrStudents="28">

<Class day="Monday" hour="10" />

</Course>

<Course name="Handling_of_Wild_Creatures" teacher="Hagrid">

<Class day="Saturday" hour="13" />

<Class day="Thursday" hour="7" />

</Course>

</Courses>

</Hogwarts>

1.2 DTD

• Rules for Elements, Attributes (and Entities).

1

• Keys and references (ID and IDREF)

• Choice (—) and Cardinalities (? at most one, + one ore more, * zero or more)

element ::= ’<!ELEMENT’ Name content ’>’

content ::= ’EMPTY’ | ’ANY’ | #PCDATA | children

children::= children ’+’ | children ’*’ | children ’?’ | children ’|’ children | ...

attlist ::= ’<!ATTLIST’ Name (Name type default)* ’>’

type ::= ’CDATA’ | ’ID’ | ’IDREF’ | ...

default ::= ’#REQUIRED’ | ’#IMPLIED’ | (’#FIXED’)? value

Example:

<!DOCTYPE Hogwarts [

<!ELEMENT Hogwarts (Rooms, Teachers, Courses) >

<!ELEMENT Rooms (Room*) >

<!ELEMENT Room EMPTY >

<!ATTLIST Room

name ID #REQUIRED

nrSeats CDATA #IMPLIED >

<!ELEMENT Teachers (Teacher*) >

<!ELEMENT Teacher (Title*) >

<!ELEMENT Title (#PCDATA) >

<!ATTLIST Teacher

name ID #REQUIRED

room IDREF #REQUIRED >

<!ELEMENT Courses (Course*) >

<!ELEMENT Course (Class*) >

<!ATTLIST Course

name ID #REQUIRED

teacher IDREF #REQUIRED

nrStudents CDATA #IMPLIED >

<!ELEMENT Class EMPTY >

<!ATTLIST Class

day CDATA #REQUIRED

hour CDATA #REQUIRED >

]>

1.3 XPath

Symbol Meaning
/ Root
. Current Element
.. Parent Element
//* All elements anywhere
elem1/elem2 Path
[test] Condition (to filter)
@Att Attribute

Example:

Page 2

Find all courses that have at least 20 students:

//Course[@nrStudents >= 20]

List all professors at the school:

//Teacher[Title = "Professor"]

Find all rooms that are used on Mondays:

//Room[@name = //Teacher[@name = //Course[Class/@day = "Monday"]/@teacher]/@room]

1.4 XQuery

• Basic structure of an XQuery expression is:

– FOR-LET-WHERE-ORDER BY-RETURN.

– Called FLWOR expressions (pronounce as flower).

• A FLWOR expression can have any number of FOR (iterate) and LET (assign) clauses, possibly mixed,
followed by possibly a WHERE clause and possibly an ORDER BY clause.

• Only required part is RETURN.

Example:

for $class in //Class[@day="Monday"]

for $teacher in $class/../@teacher

for $room in data(//Teacher[@name=$teacher]/@room)

return <room>{$room}</room>

2 Exercises

2.1 Exam HT2016

1. (8 points)
A binary tree is a tree whose every node either branches to two binary trees or is a leaf, i.e. contains a
value. Here is an example of a binary tree:

(a) (3 points) Design a DTD for representing binary trees and nothing but binary trees. The branching
nodes should not carry any information, whereas every leaf should carry a value that can be any
string (#PCDATA).

(b) (3 points) Show an XML element representing the above example tree, and which is valid according
to your DTD.

(c) (2 points) Write an XPath query that returns all leaf elements of a binary tree. For the above
example, it should return 1,2,3,4 (without any XML tags).

Page 3

2.2 Exam HT2014

1. (8 points)

<Question7>

<Applicants>

<Applicant name="Andersson" appNum="a1" />

<Applicant name="Jonsson" appNum="a2" />

<Applicant name="Larsson" appNum="a3" />

</Applicants>

<Choices>

<Choice applicant="a1" code="MPSOF" choiceNum="1" meritScore="750" />

<Choice applicant="a1" code="MPALG" choiceNum="2" meritScore="750" />

<Choice applicant="a1" code="MPCSN" choiceNum="3" meritScore="800" />

<Choice applicant="a2" code="MPALG" choiceNum="1" meritScore="700" />

<Choice applicant="a3" code="MPCSN" choiceNum="1" meritScore="850" />

<Choice applicant="a3" code="MPALG" choiceNum="2" meritScore="850" />

</Choices>

</Question7>

(a) (2 points) Write a Document Type Definition (DTD) for the XML that is given above

(b) (1 point) Write an XPath expression that finds Choice elements where the choice number is 1 and
the merit score is greater than 800.

(c) (2 points) The flexibility of XML enables us to nest elements in a more natural way than in the
example shown at the top of this question. Write a piece of XML that contains the same informa-
tion as in the example shown above, but which uses nesting, and avoids duplication of applicant
identifiers.

(d) (3 points) Assuming that the XML shown above is in file exam.xml, write an XQuery expression
that constructs your solution to part (c).

Page 4

