Database Transactions

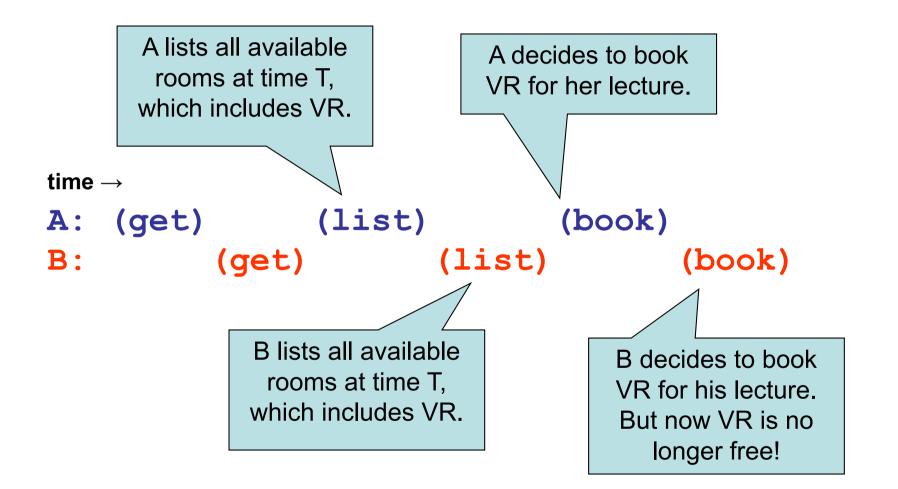
Setting

- DBMS must allow concurrent access to databases.
 - Imagine a bank where account information is stored in a database *not* allowing concurrent access. Then only one person could do a withdrawal in an ATM machine at the time – anywhere!
- Uncontrolled concurrent access may lead to problems.

Example:

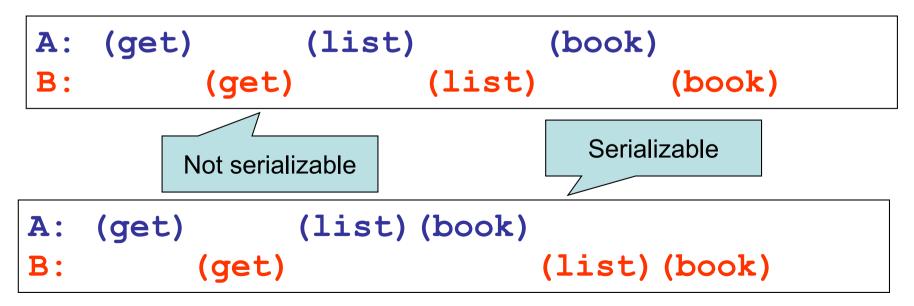
Imagine a program that does the following:

- 1. Get a day, a time and a course from the user in order to schedule a lecture. (get)
- 2. List all available rooms at that time, with number of seats, and let the user choose one. (list)
- 3. Book the chosen room for the given course at the given time. (book)

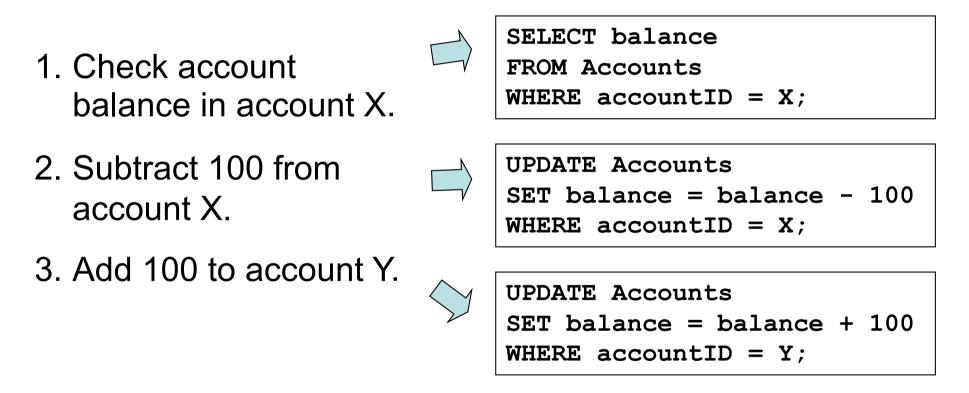

SELECT * FROM ROOMS WHERE name NOT IN (SELECT room FROM Lectures WHERE weekday = theDay AND hour = theTime);

INSERT INTO Lectures VALUES
(theCourse, thePeriod,
 theDay, theTime,
 chosenRoom);

Running in parallel


- Assume two people, A and B, both try to book a room for the same time, at the same time.
- Both programs perform the sequence (get) (list) (book), in that order.
- But we can interleave the blocks of the two sequences in any way we like!
 - Here's one possible interleaving:
 - A: (get) (list) (book) B: (get) (list) (book)

Interleaving


Serializability

- Two programs are run *in serial* if one finishes before the other starts.
- The running of two programs is *serializable* if the effects are the same as if they had been run in serial.

Example:

Assume we perform the following operations to transfer 100 SEK from account X to account Y.

Two things can go wrong: We can have strange interleavings like before. But also, assume the program crashes after executing 1 and 2 – we'll have lost 100 SEK!

Atomicity

- For many programs, we require that "all or nothing" is executed.
 - We say a sequence of actions is executed atomically if it is executed either in entirety, or not at all.
 - The state in the middle is never visible from outside the sequence.
 - cf. Greek atom = indivisible.
 - In case of a crash in the middle, any changes that were made up until that point must be undone.

ACID Transactions

- A DBMS is expected to support "ACID transactions", which are
 - Atomic: Either the whole transaction is run, or nothing.
 - Consistent: Database constraints are preserved.
 - Isolated: Different transactions may not interact with each other.
 - Durable: Effects of a transaction are not lost in case of a system crash.

Transactions in SQL

- SQL supports transactions, often behind the scenes.
 - An SQL statement is a transaction.
 - E.g. an update of a table can't be interrupted after half the rows.
 - Any triggers, procedures, functions etc. that are started by the statement is part of the same transaction.

Controlling transactions

- We can explicitly start transactions using the **START TRANSACTION** or **BEGIN** statement, and end them using **COMMIT** or **ROLLBACK**:
 - COMMIT causes an SQL transaction to complete successfully.
 - Any modifications done by the transaction are now permanent in the database.
 - ROLLBACK or ABORT causes an SQL transaction to end by aborting it.
 - Any modifications to the database must be undone.
 - Rollbacks could be caused implicitly by errors e.g. division by 0.

Read-only vs. Read-write

- A transaction that does not modify the database is called *read-only*.
 - A read-only transaction can never interfere with another transaction (but not the other way around!).
 - Any number of read-only transactions can be run concurrently.
- A transaction that both reads and modifies the database is called *read-write*.
 - No other transaction may write between the read and write.

SET TRANSACTION

 We can hint the DBMS that a transaction only does reading, by issuing the statement:

SET TRANSACTION READ ONLY;

Possibly the DBMS can make use of the information and optimize scheduling.

Drawbacks

- Serializability and atomicity are necessary, but don't come without a cost.
 - We must retain old data until the transaction commits.
 - Other transactions may need to wait for one to complete.
- In some cases some interference may be acceptable, and could speed up the system greatly.

Example:

Recall the first example of booking rooms:

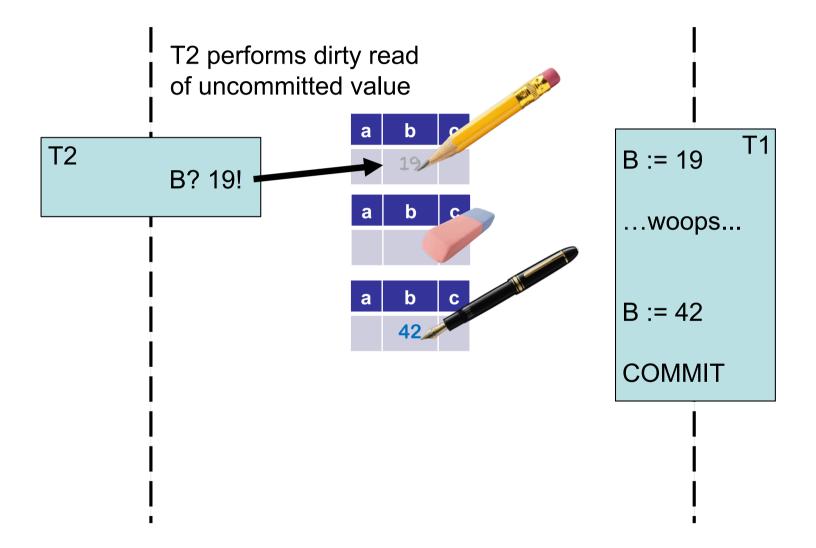
time \rightarrow A: (get) (list) (book) B: (get) (list) (book)

It could take time for the user to decide which room to choose after getting the list. If we make this a serializable transaction, all other users would have to wait as well.

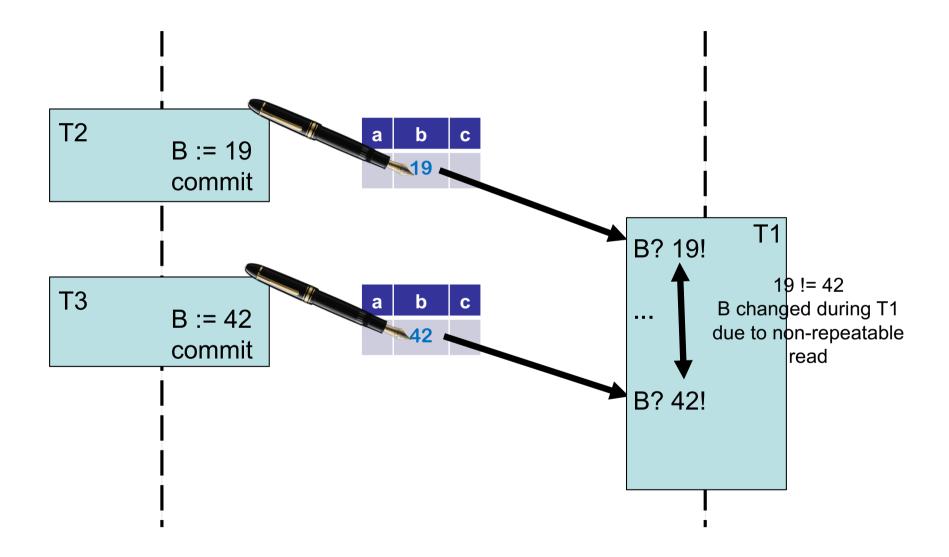
The worst thing that could happen is that B is told to choose another room when he tries to book the room that A just booked.

Isolation levels

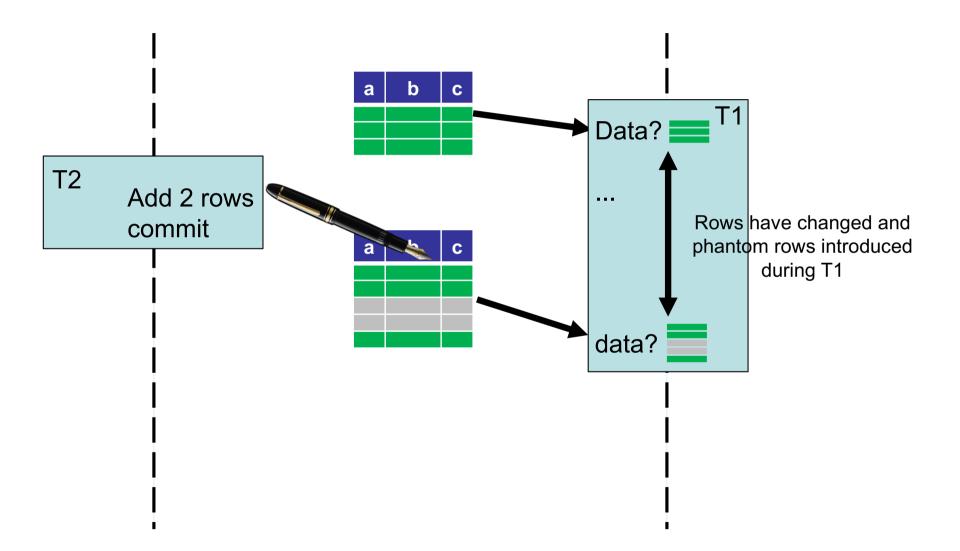
- ANSI SQL standard defines four *isolation levels*, which are choices about what kinds of interference are allowed between transactions.
- Each transaction chooses <u>its own</u> isolation level, deciding how other transactions may interfere with it.
- Isolation level is defined in terms of three phenomena that can occur.


Kinds of interference

The ANSI SQL standard describes:


- Dirty read
- Non-repeatable read
- Phantom

(These, and other kinds of interference, are discussed in: Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., & O'Neil, P. (1995). A critique of ANSI SQL isolation levels. ACM SIGMOD Record, 24(2), 1-10.)


Dirty read example

Non-repeatable read example

Phantom example

Isolation levels - differences

What kinds of interference are possible?

	Dirty reads	Non-repeatable reads	Phantoms
READ UNCOMMITTED	Yes	Yes	Yes
READ COMMITTED	No	Yes	Yes
REPEATABLE READ	No	No	Yes
SERIALIZABLE	No	No	No

Increasing Isolation strictness

Choosing isolation level

• Within a transaction we can choose the isolation level:

SET TRANSACTION ISOLATION LEVEL X; where X is one of

- SERIALIZABLE
- READ COMMITTED
- READ UNCOMMITTED
- REPEATABLE READ

Database Authorization

Authorization

- Not every user can be allowed to do everything.
 - Some data are secret and may only be seen by some users.
 - Some data are high integrity and may only be modified by certain users.

Privileges on relations

• SELECT (attributes) ON table

- Allows the user to select data from the specified table.
- Can be parametrized on attributes, meaning the user may only see certain attributes of the table.

• INSERT (attributes) ON table

- Allows the user to insert tuples into the table.
- Can be parametrized on attributes, meaning the user may only supply values for certain attributes of the table. Other attributes are then set to NULL.

Privileges on relations

- DELETE ON table
 - Allows the user to delete tuples from the table.
 - Cannot be parametrized on attributes.
- UPDATE (attributes) ON table
 - Allows the user to update data in the table.
 - Parametrizing means the user may only update values of certain attributes.

Other privileges

- REFERENCES (attributes) ON table
 - Allows the user to create a foreign reference to (attributes of) that table.
- TRIGGER ON table

...

- Allows the user to create triggers for events on that table.
- EXECUTE ON procedure
 - Allows the user to execute the procedure or function, and use it in declarations.
- USAGE, UNDER, TRUNCATE, CREATE, ALL,

Quiz!

What privileges are needed to perform the following insertion?

INSERT INTO Lectures(course, period, weekday)
SELECT course, period, 'Monday'
FROM GivenCourses G
WHERE NOT EXISTS
 (SELECT course, period
 FROM Lectures L
 WHERE L.course = G.course
 AND L.period = G.period
 AND weekday = 'Monday');

We need privileges INSERT on Lectures (course, period, weekday), SELECT on GivenCourses (course, period), and SELECT on Lectures (course, period, weekday).

Granting privileges

- You have all possible privileges on elements that you have created.
- You may grant privileges to other users on those elements.
 - A user is referred to by an *authorization ID*, which is typically a user name.
 - There is a special authorization ID, *public*
 - Granting a privilege to *public* makes it available to all users.

GRANT statement

• Granting a privilege in SQL:

GRANT list of privileges

ON element

TO list of authorization Ids;

– Example:

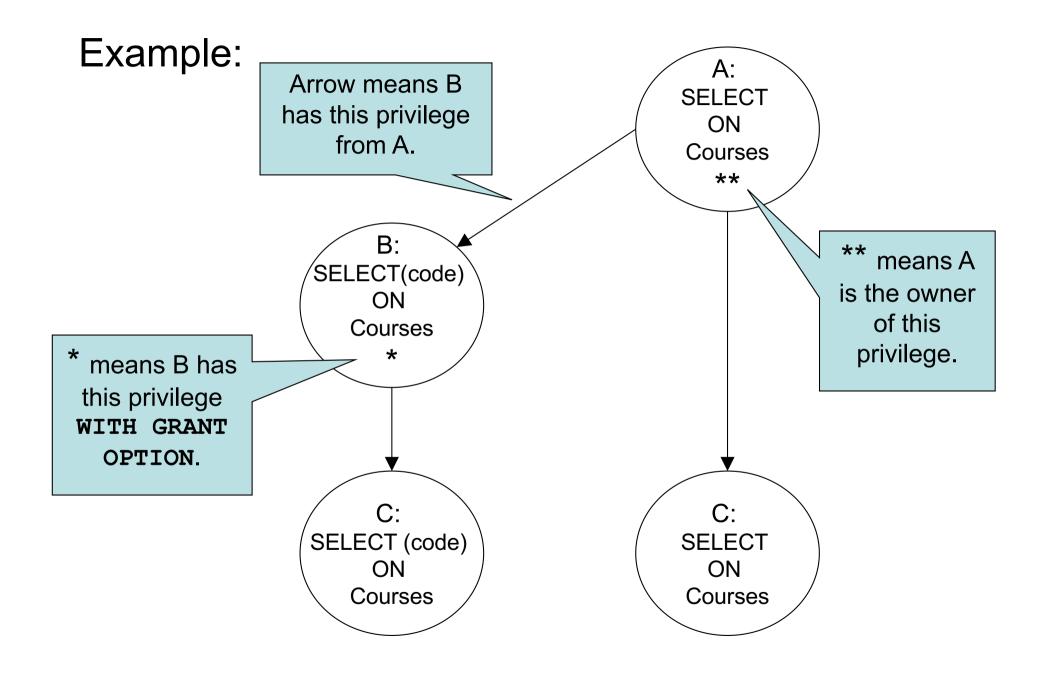
GRANT SELECT (course, period, teacher)

- ON GivenCourses
- TO public;

WITH GRANT OPTION

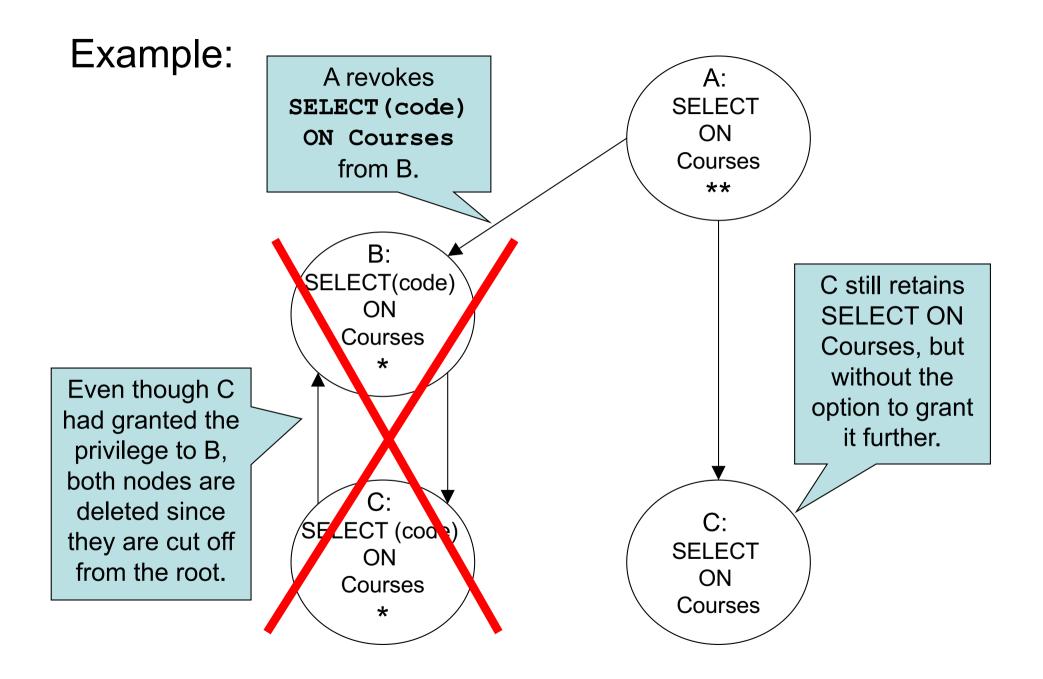
- A user that can grant privileges on some element can choose to grant **WITH GRANT OPTION**.
 - The grantee can then grant this privilege further.
 - Example:
 - GRANT SELECT (course, period, teacher)
 - ON GivenCourses
 - TO nibro WITH GRANT OPTION;

Revoking privileges

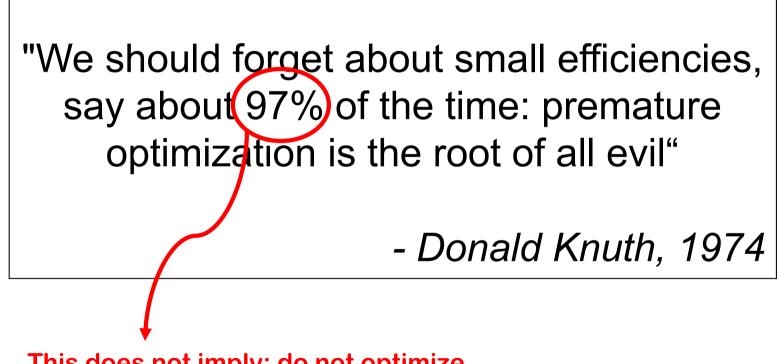

• Privileges can be revoked with the inverse statement:

REVOKE	list	of	privileges	
ON	eleme	ent		
FROM	list	of	authorization	Ids;

- Your grant of these privileges can no longer be used by these users to justify their use of the privilege.
 - But they may still have the privilege because they have it from another independent source.
- CASCADE and RESTRICT: like UPDATE/DELETE policies (see foreign keys from before)


Grant diagrams

- Nodes = user + privilege + option
 - Option is either owner, **WITH GRANT OPTION**, or neither.
 - UPDATE ON T, UPDATE (a) ON T, UPDATE (b) ON T and UPDATE ON T WITH GRANT OPTION all live in different nodes.
- Edge X → Y means that node X was used to grant Y.



Manipulating edges

- If A grants P to B, we draw an edge from AP* (or AP**) to BP(* if with grant option).
- Revoking a privilege means deleting the edge corresponding to the privilege.
- Fundamental rule: User U has privilege P as long as there is a path from XP** to either UP, UP* or UP**, where X is the owner of P.
 - Note that X could be U, in which case the path is 0 steps.

Database Indexes

This does <u>not</u> imply: do not optimize, But instead: focus on functionality first, and then optimize

Quiz!

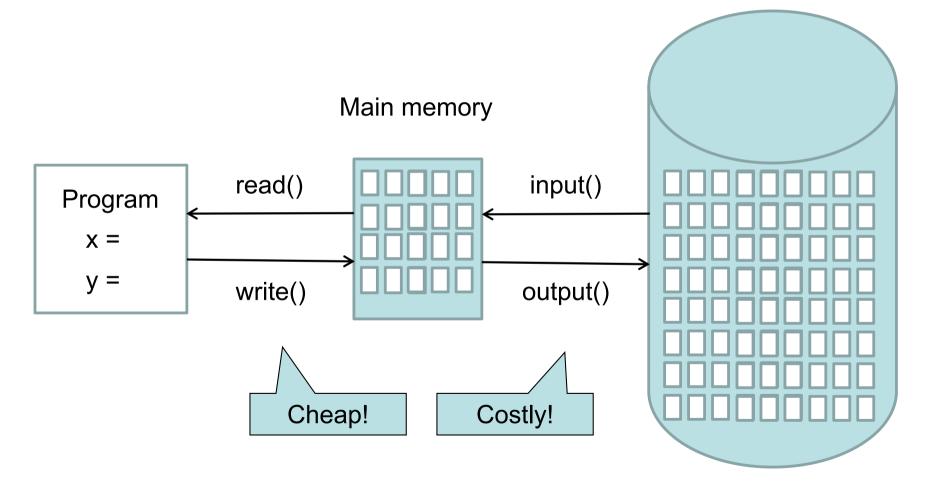
How costly is this operation (naive solution)?

<u>course</u>	<u>per</u>	<u>weekday</u>	hour	room	
TDA356	2	VR	Monday	13:15	
TDA356	2	VR	Thursday	08:00	
TDA356	3	HB1	Tuesday	08:00	
TDA356	3	HB1	Friday	13:15	
TIN090	1	HC1	Wednesday	08:00	
TIN090	1	HA3	Thursday	13:15	

SELECT *

FROM	Lectures
WHERE	course = 'TDA357'
	AND period = $3;$

Go through all *n* rows, compare with the values for course and period = 2n comparisons


n

Index

- When relations are large, scanning all rows to find matching tuples becomes very expensive.
- An *index* on an attribute A of a relation is a data structure that makes it efficient to find those tuples that have a fixed value for attribute A.
 - Example: a hash table gives amortized O(1) lookups.

Disk and main memory

Disk

Typical costs

- Some (over-simplified) typical costs of disk accessing for database operations on a relation stored over n blocks:
 - Query the full relation: n (disk operations)
 - Query with the help of index: k, where k is the number of blocks pointed to (1 for key).
 - Access index: 1
 - Insert new value: 2 (one read, one write)
 - Update index: 2 (one read, one write)

Example:

SELECT * FROM Lectures WHERE course = 'TDA357' AND period = 3;

Assume Lectures is stored in *n* disk blocks. With no index to help the lookup, we must look at all rows, which means looking in all *n* disk blocks for a total cost of *n*.

With an index, we find that there are 2 rows with the correct values for the course and period attributes. These are stored in two different blocks, so the total cost is 3 (2 blocks + reading index).

Quiz!

How costly is this operation?

SELECT * FROM Lectures, Courses WHERE course = code;

No index:

Go through all *n* blocks in Lectures, compare the value for course from each row with the values for code in all rows of Courses, stored in all *m* blocks. The total cost is thus n * maccessed disk blocks. Lectures: n disk blocks

Courses: m disk blocks

Index on code in Courses:

Go through all *n* blocks in Lectures, compare the value for course from each row with the index. Since course is a key, each value will exist at most once, so the cost is 2 * n + 1accessed disk blocks (1 for fetching the index once).

CREATE INDEX

Most DBMS support the statement

CREATE INDEX index name

ON table (attributes);

– Example:

CREATE INDEX courseIndex ON Courses (code);

- Statement not in the SQL standard, but most DBMS support it anyway.
- Primary keys are given indexes implicitly (by the SQL standard).
- In PostgreSQL, use \di to list indexes

Important properties

- Indexes are separate data stored by itself.
 - Can be created
 - ✓ on newly created relations
 - ✓ on existing relations
 - will take a long time on large relations.
 - Can be dropped without deleting any table data.
- SQL statements do not have to be changed
 - a DBMS automatically uses any indexes.

Quiz!

Why don't we have indexes on all (combinations of) attributes for faster lookups?

- Indexes require disk space.
- Modifications of tables are more expensive.
 - Need to update both table and index.
- Not always useful
 - The table is very small.
 - We don't perform lookups over it (Note: lookups \neq queries).
- Using an index costs extra disk block accesses.

EXPLAIN

• Show the execution plan of a statement

EXPLAIN SELECT * FROM Lectures;

- Used to identify performance issues in a query
- · Several options to show more detail

EXPLAIN (Analyze true, Timing true) SELECT * FROM Lectures;

• Don't forget: query is actually executed! Use a transaction to **EXPLAIN** without consequences

```
BEGIN;
EXPLAIN DELETE FROM Lectures;
ROLLBACK;
```

Example: Suppose that the Lectures relation is stored in 20 disk blocks, and that we typically perform three operations on this table:

- insert new lectures (Ins)
- list all lectures of a particular course (Q1)
- list all lectures in a given room (Q2)

Let's assume that in an average week there are:

- 2 lectures for each course, and
- 10 lectures in each room.

Let's also assume that

- each course has lectures stored in 2 blocks, and
- each room has lectures stored in 7 (some lectures are stored in the same block).

Costs

Insert new lectures (Ins) List all lectures of a particular course (Q1) List all lectures in a given room (Q2)

	Case A	Case B	Case C	Case D
		Index on	Index on	
	No index	(course, period, weekday)	room	Both indexes
Ins		What cost?		
Q1		What cost?		
Q2		What cost?		

The amortized cost depends on the proportion of operations of each kind.

_	Ins	Q1	Q2	Case A	Case B	Case C	Case D
_	0.2	0.4	0.4	16.4	10	12	5.6
	0.8	0.1	0.1	5.6	5.5	6	5.9
	0.1	0.6	0.3	18.2	8.2	14.8	4.8