
Database Transactions

Setting

• DBMS must allow concurrent access to
databases.
– Imagine a bank where account information is

stored in a database not allowing concurrent
access. Then only one person could do a
withdrawal in an ATM machine at the time –
anywhere!

• Uncontrolled concurrent access may lead
to problems.

Example:
Imagine a program that does the following:

1. Get a day, a time and a
course from the user in
order to schedule a
lecture. (get)

2. List all available rooms at
that time, with number of
seats, and let the user
choose one. (list)

3. Book the chosen room for
the given course at the
given time. (book)

SELECT *
FROM ROOMS
WHERE name NOT IN
(SELECT room
FROM Lectures
WHERE weekday = theDay
AND hour = theTime);

INSERT INTO Lectures VALUES
(theCourse, thePeriod,
theDay, theTime,
chosenRoom);

Running in parallel
• Assume two people, A and B, both try to book a

room for the same time, at the same time.
• Both programs perform the sequence
(get)(list)(book), in that order.

• But we can interleave the blocks of the two
sequences in any way we like!
– Here’s one possible interleaving:

A: (get) (list) (book)
B: (get) (list) (book)

Interleaving

A: (get) (list) (book)
B: (get) (list) (book)

time →

A lists all available
rooms at time T,

which includes VR.

B lists all available
rooms at time T,

which includes VR.

A decides to book
VR for her lecture.

B decides to book
VR for his lecture.
But now VR is no

longer free!

Serializability
• Two programs are run in serial if one finishes

before the other starts.
• The running of two programs is serializable if the

effects are the same as if they had been run in
serial.
A: (get) (list) (book)
B: (get) (list) (book)

A: (get) (list)(book)
B: (get) (list)(book)

Not serializable Serializable

Example:
Assume we perform the following operations to
transfer 100 SEK from account X to account Y.

1. Check account
balance in account X.

2. Subtract 100 from
account X.

3. Add 100 to account Y.

SELECT balance
FROM Accounts
WHERE accountID = X;

UPDATE Accounts
SET balance = balance - 100
WHERE accountID = X;

UPDATE Accounts
SET balance = balance + 100
WHERE accountID = Y;

Two things can go wrong: We can have strange interleavings like
before. But also, assume the program crashes after executing 1 and 2
– we’ll have lost 100 SEK!

Atomicity

• For many programs, we require that ”all or
nothing” is executed.
– We say a sequence of actions is executed

atomically if it is executed either in entirety, or
not at all.

• The state in the middle is never visible from
outside the sequence.

• cf. Greek atom = indivisible.
• In case of a crash in the middle, any changes that

were made up until that point must be undone.

ACID Transactions
• A DBMS is expected to support ”ACID

transactions”, which are
– Atomic: Either the whole transaction is run, or

nothing.
– Consistent: Database constraints are

preserved.
– Isolated: Different transactions may not

interact with each other.
– Durable: Effects of a transaction are not lost

in case of a system crash.

Transactions in SQL
• SQL supports transactions, often behind the

scenes.
– An SQL statement is a transaction.

• E.g. an update of a table can’t be interrupted after half the
rows.

• Any triggers, procedures, functions etc. that are started by
the statement is part of the same transaction.

Controlling transactions
• We can explicitly start transactions using the
START TRANSACTION or BEGIN statement, and
end them using COMMIT or ROLLBACK:
– COMMIT causes an SQL transaction to complete

successfully.
• Any modifications done by the transaction are now permanent in

the database.
– ROLLBACK or ABORT causes an SQL transaction to end

by aborting it.
• Any modifications to the database must be undone.
• Rollbacks could be caused implicitly by errors e.g. division by 0.

Read-only vs. Read-write
• A transaction that does not modify the database

is called read-only.
– A read-only transaction can never interfere with

another transaction (but not the other way around!).
– Any number of read-only transactions can be run

concurrently.
• A transaction that both reads and modifies the

database is called read-write.
– No other transaction may write between the read and

write.

SET TRANSACTION

• We can hint the DBMS that a transaction
only does reading, by issuing the
statement:

– Possibly the DBMS can make use of the
information and optimize scheduling.

SET TRANSACTION READ ONLY;

Drawbacks

• Serializability and atomicity are necessary,
but don’t come without a cost.
– We must retain old data until the transaction

commits.
– Other transactions may need to wait for one

to complete.
• In some cases some interference may be

acceptable, and could speed up the
system greatly.

Example:
Recall the first example of booking rooms:

It could take time for the user to decide which
room to choose after getting the list. If we make
this a serializable transaction, all other users
would have to wait as well.

The worst thing that could happen is that B is told
to choose another room when he tries to book
the room that A just booked.

A: (get) (list) (book)
B: (get) (list) (book)

time →

Isolation levels

• ANSI SQL standard defines four isolation
levels, which are choices about what kinds
of interference are allowed between
transactions.

• Each transaction chooses its own isolation
level, deciding how other transactions may
interfere with it.

• Isolation level is defined in terms of three
phenomena that can occur.

Kinds of interference

The ANSI SQL standard describes:

• Dirty read
• Non-repeatable read
• Phantom

(These, and other kinds of interference, are discussed in: Berenson, H., Bernstein, P., Gray, J.,
Melton, J., O'Neil, E., & O'Neil, P. (1995). A critique of ANSI SQL isolation levels. ACM SIGMOD
Record, 24(2), 1-10.)

Dirty read example

a b c
19

a b c

a b c
42

T1B := 19

…woops...

B := 42

COMMIT

T2
B? 19!

T2 performs dirty read
of uncommitted value

Non-repeatable read example

a b c
19

a b c
42

T2
B := 19
commit

T3
B := 42
commit

T1B? 19!

...

B? 42!

19 != 42
B changed during T1
due to non-repeatable

read

Phantom example

a b c

T2
Add 2 rows
commit

T1Data?

...

data?

Rows have changed and
phantom rows introduced

during T1
a b c

Isolation levels - differences

Dirty reads Non-repeatable
reads

Phantoms

READ
UNCOMMITTED

Yes Yes Yes

READ
COMMITTED

No Yes Yes

REPEATABLE
READ

No No Yes

SERIALIZABLE No No No

What kinds of interference are possible?

Increasing
Isolation
strictness

Choosing isolation level

• Within a transaction we can choose the
isolation level:

where X is one of

SET TRANSACTION ISOLATION LEVEL X;

• SERIALIZABLE
• READ COMMITTED
• READ UNCOMMITTED
• REPEATABLE READ

Database Authorization

Authorization

• Not every user can be allowed to do
everything.
– Some data are secret and may only be seen

by some users.
– Some data are high integrity and may only be

modified by certain users.

Privileges on relations
• SELECT (attributes) ON table

– Allows the user to select data from the specified table.
– Can be parametrized on attributes, meaning the user

may only see certain attributes of the table.
• INSERT (attributes) ON table

– Allows the user to insert tuples into the table.
– Can be parametrized on attributes, meaning the user

may only supply values for certain attributes of the
table. Other attributes are then set to NULL.

Privileges on relations
• DELETE ON table

– Allows the user to delete tuples from the
table.

– Cannot be parametrized on attributes.
• UPDATE (attributes) ON table

– Allows the user to update data in the table.
– Parametrizing means the user may only

update values of certain attributes.

Other privileges
• REFERENCES (attributes) ON table

– Allows the user to create a foreign reference to
(attributes of) that table.

• TRIGGER ON table
– Allows the user to create triggers for events on that

table.
• EXECUTE ON procedure

– Allows the user to execute the procedure or function,
and use it in declarations.

• USAGE, UNDER, TRUNCATE, CREATE, ALL,
…

Quiz!
What privileges are needed to perform the

following insertion?
INSERT INTO Lectures(course, period, weekday)
SELECT course, period, ’Monday’
FROM GivenCourses G
WHERE NOT EXISTS

(SELECT course, period
FROM Lectures L
WHERE L.course = G.course

AND L.period = G.period
AND weekday = ’Monday’);

We need privileges INSERT on Lectures(course, period,
weekday), SELECT on GivenCourses(course, period), and
SELECT on Lectures(course, period, weekday).

Granting privileges
• You have all possible privileges on

elements that you have created.
• You may grant privileges to other users on

those elements.
– A user is referred to by an authorization ID,

which is typically a user name.
– There is a special authorization ID, public
– Granting a privilege to public makes it

available to all users.

GRANT statement

• Granting a privilege in SQL:

– Example:

GRANT list of privileges
ON element
TO list of authorization Ids;

GRANT SELECT(course, period, teacher)
ON GivenCourses
TO public;

WITH GRANT OPTION

• A user that can grant privileges on some
element can choose to grant WITH GRANT
OPTION.
– The grantee can then grant this privilege

further.
– Example:

GRANT SELECT(course, period, teacher)
ON GivenCourses
TO nibro WITH GRANT OPTION;

Revoking privileges
• Privileges can be revoked with the inverse

statement:

• Your grant of these privileges can no longer be
used by these users to justify their use of the
privilege.
– But they may still have the privilege because they have it from

another independent source.
• CASCADE and RESTRICT: like UPDATE/DELETE

policies (see foreign keys from before)

REVOKE list of privileges
ON element
FROM list of authorization Ids;

Grant diagrams

• Nodes = user + privilege + option
– Option is either owner, WITH GRANT
OPTION, or neither.

– UPDATE ON T, UPDATE(a) ON T,
UPDATE(b) ON T and UPDATE ON T WITH
GRANT OPTION all live in different nodes.

• Edge X → Y means that node X was used
to grant Y.

Example: A:
SELECT

ON
Courses

**

C:
SELECT (code)

ON
Courses

C:
SELECT

ON
Courses

B:
SELECT(code)

ON
Courses

*

** means A
is the owner

of this
privilege.* means B has

this privilege
WITH GRANT
OPTION.

Arrow means B
has this privilege

from A.

Manipulating edges
• If A grants P to B, we draw an edge from AP* (or

AP**) to BP(* if with grant option).
• Revoking a privilege means deleting the edge

corresponding to the privilege.
• Fundamental rule: User U has privilege P as

long as there is a path from XP** to either UP,
UP* or UP**, where X is the owner of P.
– Note that X could be U, in which case the path is 0

steps.

Example:
A:

SELECT
ON

Courses
**

B:
SELECT(code)

ON
Courses

*

C:
SELECT (code)

ON
Courses

*

C:
SELECT

ON
Courses

A revokes
SELECT(code)
ON Courses

from B.

Even though C
had granted the
privilege to B,

both nodes are
deleted since

they are cut off
from the root.

C still retains
SELECT ON
Courses, but
without the

option to grant
it further.

Database Indexes

"We should forget about small efficiencies,
say about 97% of the time: premature

optimization is the root of all evil“

- Donald Knuth, 1974

This does not imply: do not optimize,
But instead: focus on functionality first, and then optimize

Quiz!

How costly is this operation (naive solution)?

SELECT *
FROM Lectures
WHERE course = ’TDA357’

AND period = 3;

course per weekday hour room
TDA356 2 VR Monday 13:15

TDA356 2 VR Thursday 08:00

TDA356 3 HB1 Tuesday 08:00

TDA356 3 HB1 Friday 13:15

TIN090 1 HC1 Wednesday 08:00

TIN090 1 HA3 Thursday 13:15

n

Go through all n rows, compare
with the values for course and
period = 2n comparisons

Index
• When relations are large, scanning all

rows to find matching tuples becomes very
expensive.

• An index on an attribute A of a relation is a
data structure that makes it efficient to find
those tuples that have a fixed value for
attribute A.
– Example: a hash table gives amortized O(1)

lookups.

Disk and main memory

x =
y =

Program

Main memory

input()

output()

read()

write()

Disk

Costly!Cheap!

Typical costs
• Some (over-simplified) typical costs of disk

accessing for database operations on a
relation stored over n blocks:
– Query the full relation: n (disk operations)
– Query with the help of index: k, where k is the

number of blocks pointed to (1 for key).
– Access index: 1
– Insert new value: 2 (one read, one write)
– Update index: 2 (one read, one write)

Example:
SELECT *
FROM Lectures
WHERE course = ’TDA357’

AND period = 3;

Assume Lectures is stored in n disk blocks. With no
index to help the lookup, we must look at all rows,
which means looking in all n disk blocks for a total
cost of n.

With an index, we find that there are 2 rows with the
correct values for the course and period attributes.
These are stored in two different blocks, so the total
cost is 3 (2 blocks + reading index).

Quiz!

How costly is this operation?

SELECT *
FROM Lectures, Courses
WHERE course = code;

Go through all n blocks in Lectures,
compare the value for course from
each row with the values for code in
all rows of Courses, stored in all m
blocks. The total cost is thus n * m
accessed disk blocks.

Lectures: n disk blocks

Courses: m disk blocks

Index on code in Courses:No index:
Go through all n blocks in Lectures,
compare the value for course from
each row with the index. Since
course is a key, each value will exist
at most once, so the cost is 2 * n + 1
accessed disk blocks (1 for fetching
the index once).

CREATE INDEX
• Most DBMS support the statement

CREATE INDEX index name
ON table (attributes);

– Example:

– Statement not in the SQL standard, but most
DBMS support it anyway.

– Primary keys are given indexes implicitly (by
the SQL standard).

– In PostgreSQL, use \di to list indexes

CREATE INDEX courseIndex
ON Courses (code);

Important properties

• Indexes are separate data stored by itself.
§ Can be created

üon newly created relations
üon existing relations

- will take a long time on large relations.
§ Can be dropped without deleting any table data.

• SQL statements do not have to be
changed
– a DBMS automatically uses any indexes.

Quiz!
Why don’t we have indexes on all (combinations

of) attributes for faster lookups?

– Indexes require disk space.
– Modifications of tables are more expensive.

• Need to update both table and index.
– Not always useful

• The table is very small.
• We don’t perform lookups over it (Note: lookups ≠ queries).

– Using an index costs extra disk block accesses.

EXPLAIN
• Show the execution plan of a statement

• Used to identify performance issues in a query
• Several options to show more detail

• Don’t forget: query is actually executed! Use a
transaction to EXPLAIN without consequences

EXPLAIN SELECT * FROM Lectures;

EXPLAIN (Analyze true, Timing true)
SELECT * FROM Lectures;

BEGIN;
EXPLAIN DELETE FROM Lectures;
ROLLBACK;

Example: Suppose that the Lectures relation is
stored in 20 disk blocks, and that we typically
perform three operations on this table:
– insert new lectures (Ins)
– list all lectures of a particular course (Q1)
– list all lectures in a given room (Q2)

Let’s assume that in an average week there are:
– 2 lectures for each course, and
– 10 lectures in each room.

Let’s also assume that
– each course has lectures stored in 2 blocks, and
– each room has lectures stored in 7 (some lectures are

stored in the same block).

Costs
Case A Case B Case C Case D

No index
Index on

(course, period, weekday)
Index on

room Both indexes
Ins 2 4 4 6
Q1 20 3 20 3
Q2 20 20 8 8

Ins Q1 Q2 Case A Case B Case C Case D
0.2 0.4 0.4 16.4 10 12 5.6
0.8 0.1 0.1 5.6 5.5 6 5.9
0.1 0.6 0.3 18.2 8.2 14.8 4.8

Insert new lectures (Ins)
List all lectures of a particular course (Q1)
List all lectures in a given room (Q2)

The amortized cost depends on the proportion of operations of each kind.

What cost?
What cost?
What cost?

