E-R diagrams and database schemas

A(al,az,a3)

B(bl,b2)

R(al,a2,b)
(al,a2) -> A.(al,a2)
b -> B.bl

A(al,b)

b -> B.bl
B(bl)

b -> B.bl
B(bl)

ER-Approach:
e A(al) Null Approach:
B(bl) A(al,b (or Null))

R(a,b) b -> B.bl
] "t aa sen
b -> B.bl

Null-Approach:

ER-Approach: B(bl,b2,al (or Null))
B(bl,b2)
A(bl,al) 00-Approach:
bl -> B.bl A(bl,b2,al)

B (bl,b2)

Functional dependencies

Definition (tuple, attribute, value). A tuple has the form
{A1 :’Ul,...,An :’Un}

where Aq,..., A, are attributes and vy,...,v, are their values.

Definition (signature, relation). The signature of a tuple, S, is the set of all its attributes, {A4;,..., A, }. A relation
R of signature S is a set of tuples with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.

Definition (projection). If ¢ is a tuple of a relation with signature S, the projection t.A; computes to the value v;.
Definition (simultaneous projection). If X is a set of attributes {By,..., B, } € S and ¢ is a tuple of a relation with
signature S, we can form a simultaneous projection,

t.X ={B,=t.By,...,By =t.B,}

Definition (functional dependency, FD). Assume X is a set of attributes and A an attribute, all belonging to a
signature S. Then A is functionally dependent on X in the relation R, written X — A, if

e for all tuples t,u in R, if t.X = u.X then t.A = u.A.
If Y is a set of attributes, we write X — Y to mean that X — A for every A in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a signature S such that S = XUY UZ.
Then Y has a multivalued dependency on X in R, written X — Y if

e for all tuples t,u in R, if £.X = w.X then there is a tuple v in R such that

—vX =tX
—0Y=tY
— vz =uZ

Definition. An attribute A follows from a set of attributes Y, if there is an FD X — A such that X C Y.
Definition (closure of a set of attributes under FDs). The closure of a set of attributes X C S under a set FD of
functional dependencies, denoted X+, is the set of those attributes that follow from X.
Definition (trivial functional dependencies). An FD X — A is trivial, if A € X.
Definition (superkey, key). A set of attributes X C S is a superkey of S, if S C X+.
A set of attributes X C S is a key of S if
e X is a superkey of S
e 1o proper subset of X is a superkey of S
Definition (Boyce-Codd Normal Form, BCNF violation). A functional dependency X — A violates BCNF if
e X is not a superkey
e the dependency is not trivial
A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF violations.
Definition (prime). An attribute A is prime if it belongs to some key.
Definition (Third Normal Form, 3NF violation). A functional dependency X — A violates 3NF if
e X is not a superkey
e the dependency is not trivial
e A is not prime
Definition (trivial multivalued dependency). A multivalued dependency X —» A is trivial if Y C X or X UY = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency X —» A violates 4NF if
e X is not a superkey
e the MVD is not trivial.
Algorithm (BCNF decomposition). Consider a relation R with signature S and a set F of functional dependencies.
R can be brought to BCNF by the following steps:
1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X — A, decompose R to two relations

e Ry with signature X U {A}
e R, with signature S — {A}

3. Apply the above steps to R; and Ry with functional dependencies projected to the attributes contained in each
of them.
Algorithm (4NF decomposition). Consider a relation R with signature S and a set M of multivalued dependencies.
R can be brought to 4NF by the following steps:
1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X — Y, decompose R to two relations

e Ry with signature X U {Y'}
e Ry with signature S — Y

3. Apply the above steps to RI and R2
Concept (minimal basis of a set of functional dependencies; not a rigorous definition). A minimal basis of a set F'
of functional dependencies is a set F- that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening an LHS in X — A means finding a
minimal subset of X such that A can still be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F' of functional dependencies.

1. If R has no 3NF violations, return R.

2. If R has 3NF violations,

e compute a minimal basis of F- of F'

group F- by the left hand side, i.e. so that all depenencies X — A are grouped together
for each of the groups, return the schema X A; ... A, with the common LHS and all the RHSs
if one of the schemas contains a key of R, these groups are enough; otherwise, add a schema containing just
some key

Relational algebra

relation =
relname name of relation (can be used alone)
| ocondition relation selection (sigma) WHERE
| Tprojection+ relation projection (pi) SELECT
| Prelname (attribute+)? relation renaming (rho) AS
relation

| Tattribute* aggregationexp-+
grouping (gamma) GROUP BY, HAVING

| Texpressiont relation sorting (tau) ORDER BY
| § relation removing duplicates (delta) DISTINCT
| relation x relation cartesian product FROM, CROSS JOIN
| relation U relation union UNION
| relation N relation intersection INTERSECT
| relation — relation difference EXCEPT
| relation > relation NATURAL JOIN
| relation >, dition relation theta join JOIN ON
| relation >yt tet relation INNER JOIN

relation <2, . relation FULL OUTER JOIN

attribute+
. oL .
| relation Do Ctributet relation LEFT OUTER JOIN
| relation [X];It%tribut o Telation RIGHT OUTER JOIN
projection ::=

expression
| expression — attribute

aggregationexp ::=

aggregation(*|attribute)
| aggregation(*|attribute) — attribute

expression, condition, aggregation, attribute ::

as in SQL, but excluding subqueries

expression, can be just an attribute

rename projected expression AS

without renaming

with renaming AS

SQL

statement ::=

CREATE TABLE tablename (

* attribute type inlineconstraint*

query ::

NN N N N

table ::

* [CONSTRAINT name]? constraint

s

DROP TABLE tablename ;
INSERT INTO tablename tableplaces? values ;

DELETE FROM tablename
WHERE condition ;

UPDATE tablename
SET setting+
WHERE condition ;

query ;

CREATE VIEW viewname
AS (query) ;

ALTER TABLE tablename
alteration ;

COPY tablename FROM filepath ;
postgresql-specific, tab-separated

SELECT DISTINCT? columns
FROM table+

WHERE condition

GROUP BY attribute+
HAVING condition

ORDER BY attributeorder+

query setoperation query

query ORDER BY attributeorder+
no previous ORDER in query

WITH localdef+ query

tablename

table AS? tablename ## only one iteration allowed
(query) AS? tablename

table jointype JOIN table ON condition

table jointype JOIN table USING (attribute+)

table NATURAL jointype JOIN table

condition ::=

expression comparison compared

expression NOT? BETWEEN expression AND expression
condition boolean condition

expression NOT? LIKE ’pattern*’

expression NOT? IN values

NOT? EXISTS (query)

expression IS NOT? NULL

NOT (condition)

type ::=
CHAR (integer) | VARCHAR (integer) | TEXT
| INT | FLOAT
inlineconstraint ::= ## not separated by commas!

PRIMARY KEY

REFERENCES tablename (attribute) policyx*
UNIQUE | NOT NULL

CHECK (condition)

DEFAULT value

constraint ::=
PRIMARY KEY (attribute+)
| FOREIGN KEY (attribute+)
REFERENCES tablename (attribute+) policy*
| UNIQUE (attribute+) | NOT NULL (attribute)
| CHECK (condition)

policy ::=
ON DELETE|UPDATE CASCADE|SET NULL
alternatives: CASCADE and SET NULL

tableplaces ::=
(attribute+)

values ::=
VALUES (value+)
| (query)

VALUES only in INSERT

setting ::=
attribute = value

alteration ::=
ADD COLUMN attribute type inlineconstraint*
| DROP COLUMN attribute

localdef ::=
WITH tablename AS (query)

columns ::=
* ## literal asterisk
| column+

column ::=
expression
| expression AS name

attributeorder ::=
attribute (DESC|ASC)?

setoperation ::=
UNION | INTERSECT | EXCEPT

jointype ::=
LEFT|RIGHT |FULL OUTER?
| INNER?
comparison ::=
= <> <> <=]>=

expression ::=
attribute
| tablename.attribute
| value
| expression operation expression
| aggregation (DISTINCT? *|attribute)
| (query)

value ::=

integer | float | string ## string in single quotes

| value operation value
| NULL

boolean ::=
AND | OR

triggers

functiondefinition ::=
CREATE FUNCTION functionname() RETURNS TRIGGER AS $$
BEGIN
* triggerstatement
END
$$ LANGUAGE ’plpgsql’

>

triggerdefinition ::=
CREATE TRIGGER triggernane
whentriggered
FOR EACH ROW|STATEMENT
? WHEN (condition)
EXECUTE PROCEDURE functionname

3

whentriggered ::=
BEFORE | AFTER events ON tablename
| INSTEAD OF events ON viewname

events ::= event | event OR events
event INSERT | UPDATE | DELETE

triggerstatement ::=
IF (condition) THEN statement+ elsif* END IF ;
| RAISE EXCEPTION ’message’ ;
| statement ; ## INSERT, UPDATE or DELETE
| RETURN NEW|OLD|NULL ;

elsif ::= ELSIF (condition) THEN statement+

compared ::=
expression
| ALL|ANY values

operation ::=
ngn | n_n Ny | ll/ll | Il%ll
| ll| |II
pattern ::=
% | _ | character ## match any string/char

| [character*]
| [~ characterx*]

aggregation ::=
MAX | MIN | AVG | COUNT | SUM

privileges

statement ::=
GRANT privilege+ ON object TO user+ grantoption?
| REVOKE privilege+ ON object FROM user+ CASCADE?
| REVOKE GRANT OPTION FOR privilege
ON object FROM user+ CASCADE?
| GRANT rolename TO username adminoption?

privilege ::=
SELECT | INSERT | DELETE | UPDATE | REFERENCES
| ALL PRIVILEGES ## |

object ::=
tablename (attribute+)+ | viewname (attribute+)+
| trigger ## |

user ::= username | rolename | PUBLIC
grantoption ::= WITH GRANT OPTION
adminoption ::= WITH ADMIN OPTION

transactions

statement ::=
START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

mode ::=
ISOLATION LEVEL level
| READ WRITE | READ ONLY | NOT? DEFERRABLE

level ::=
SERIALIZABLE | REPEATABLE READ | READ COMMITTED
| READ UNCOMMITTED

indexes

statement ::=
CREATE INDEX indexname ON tablename (attribute+)?

XML

document ::= header? dtd? element
starttag ::= < ident attr* >
header ::= "<7xml version=1.0 encoding=utf-8 standalone=no?>" endtag = </ ident >
standalone=no if with DTD emptytag = < ident attrx />
dtd ::= <! DOCTYPE ident [definition*]> attr ::= ident = string ## string in double quotes
definition ::= ## XPath
<! ELEMENT ident rhs >
| <! ATTLIST ident attributex > path ::=
axis item cond? path?
rhs ::= | path "|" path
EMPTY | #PCDATA | ident
| rhs"*" | rhs"+" | rhs"?" axis ::=/ | //
| rhs , rhs
| rhs "|" rhs item ::= "@"? (ident*) | ident :: ident
attribute ::= ident type #REQUIRED|#IMPLIED cond ::= [exp op exp] | [integer]
type ::= CDATA | ID | IDREF exp = "@"? ident | integer | string
element ::= starttag element* endtag | emptytag op == 1=]<|>]|<=|>=

Grammar conventions

CAPITAL words are SQL or XML keywords, to take literally

small character words are names of syntactic categories, defined each in their own rules

| separates alternatives

+ means one or more, separated by commas in SQL, by white space in XML

* means zero or more, separated by commas in SQL, by white space in XML

? means zero or one

in the beginning of a line, + * 7 operate on the whole line; elsewhere, they operate on the word just before
start comments, which explain unexpected notation or behaviour

text in double quotes means literal code, e.g. "*" means the operator *

other symbols, e.g. parentheses, also mean literal code (quotes are used only in some cases, to separate code
from grammar notation)

e parentheses can be added to disambiguate the scopes of operators, in both SQL and XML

