
TDA357/DIT620 Databases lab assignment

Last updated: February 27, 2017

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 Structure . 2
1.3 Assignment submission and deadlines . 2

2 Task 0: Getting started 4
2.1 Your job . 4
2.2 What to submit . 4

3 Task 1: Designing the database schema 5
3.1 Domain description . 5
3.2 Your job . 5
3.3 What to submit . 6

4 Task 2: Constructing the database 7
4.1 Description . 7

4.1.1 Predefined constants and functions . 7
4.1.2 Game rules . 8
4.1.3 Personnummers . 9
4.1.4 Negative numbers . 9
4.1.5 Unidirectional roads . 9
4.1.6 Rounding . 9
4.1.7 The government (public roads) . 9

4.2 Your job . 10
4.2.1 Views . 10
4.2.2 Triggers . 10
4.2.3 Unit tests . 11

4.3 What to submit . 11

5 Task 3: Writing a front end application 12
5.1 Your job . 12

5.1.1 Game loop . 12
5.1.2 World file format . 12
5.1.3 Player turn . 13

5.2 What to submit . 13

1 of 14

1 Introduction

The introduction was last updated on 20 January 2017

1.1 Purpose

The purpose of this assignment is for you to get hands-on experience with designing, constructing
and using a database for a real-world domain. You will see all aspects of database creation, from
understanding the domain to using the final database from external applications.

The final result of this assignment is a playable computer game. The game is set in a world
with towns and cities, which are interconnected by roads. From time to time, money is awarded
to the first player that reaches a certain city or town. Players can build roads and hotels.
Traveling across a road costs money, and so does staying at a hotel. More details about the
game-play of this game will be provided in one of the later tasks.

1.2 Structure

This assignment consists of four distinct tasks:

Task 0: Getting started This task gets you set up to successfully complete this lab assignment
by finding a lab partner, registering in Fire and getting PostgreSQL credentials.

Task 1: Designing the database schema From the domain description, you will create an
E/R diagram which correctly models the domain model and translate it into a relational
database schema.

Task 2: Constructing the database From the E/R diagram and relational database schema,
you will implement the database schema in the PostgreSQL database engine.

Task 3: Writing a front end application Based on a working database implementation in
PostgreSQL, you will write a front end application in Java using JDBC that communicates
with the database.

Contrary to previous lab assignments for this course, a task does not build on the solution of
the previous task.
For instance, do not assume that the database schema you design in Task 1, will be the database
schema you implement in Task 2.

To make it easier to grade, we will select a good solution for a given task and ask all teams
to start from that.
For instance, after the deadline for Task 1, we select a good solution for Task 1 and distribute it
to everyone. Task 2 will then consist of implementing the database schema we provide, instead
of your own.

1.3 Assignment submission and deadlines

To pass the programming assignment, you must pass all four tasks described in this document.
You will do the assignment in groups of two.

You must submit your solutions through the Fire reporting system. You must submit your
groups solutions to each task by the given deadline. Each task will list what files to submit to
Fire.

2 of 14

Each task has a first deadline and last deadline. You should submit a solution by the first
deadline, even if it is incomplete. Not submitting a solution by the first deadline means you fail
that task (and thus the lab).

After submission, your assignment will be graded (pass or reject) and you will receive com-
ments on your solution. If your submission is rejected, you are allowed to refine your solution
and re-submit it until the last deadline. After the last deadline, no more solutions for that task
are accepted.

To reduce the TAs workload for grading lab assignments, some tasks will be automatically
graded. This means that your Fire submission is processed using an automated tool which runs
a collection of tests on your submission. This automated tool will report any problems found
with your submission, just like a human grader would. Since this is a new way of grading for
this course, we expect that there may be some issues along the way. Please give us some leeway
on this.

The advantage of automated grading is that you receive feedback on your submissions a lot
faster.

3 of 14

2 Task 0: Getting started

Task 0 was last updated on 20 January 2017

Deadline for first submission: Sunday 22 January 2017
Deadline for last resubmission: Sunday 12 March 2017

2.1 Your job

Find a lab partner This lab should be completed in teams of 2. Exceptions can be made
for extraordinary reasons, after consulting with the examiner. Do not wait until the last
minute: the sooner you find a lab partner, the sooner you can start working on Task 1.

Register in the Fire system We use the Fire system to handle submissions and grading of
the tasks in this lab assignment. You need to sign up to Fire in order to register your lab
team, and later, submit your solutions for the different tasks. Read the separate notes on
registering in the Fire system and submitting assignment tasks [3].

Get your PostgreSQL credentials Each lab team has its own PostgreSQL username and
password. These credentials are distributed through the Fire system, after you have regis-
tered your lab team and submitted Task 0 in Fire (send in an empty file). You will need
these credentials for Tasks 2 and 3. Read the separate notes on requesting your groups
PostgreSQL account [3].

2.2 What to submit

Just an empty file. You will receive the PostgreSQL credentials as a reply.

4 of 14

3 Task 1: Designing the database schema

Task 1 was last updated on 20 January 2017

Deadline for first submission: Sunday 5 February 2017
Deadline for last resubmission: Sunday 12 March 2017

3.1 Domain description

The domain to model is that of a fictional board game.

Countries Countries consist of areas which are either cities or towns. Countries have unique
names.

Areas Areas can be interconnected by roads. There can be many roads between 2 areas. Areas
have names that are only unique in the country they are located in. Areas also have a population
size associated with them.

Roads Roads can be owned by a person, or be a public road (not owned). Roads have a
roadtax associated with them.

Hotels Hotels have names, but they are not unique in any way. Hotels also have a price per
night.

People A Person is always a citizen of a country. People travel around, but are always located
in a certain city or town (an area). People can own hotels, which are located in cities (not
towns). A person can own multiple roads, but cannot own more than 1 road between 2 areas.
A person can own maximum 1 hotel in a city. Persons have a name and a personnummer. A
person’s name is not unique, but the personnummer is unique in their country. Each person can
also speak several languages and have a budget.

3.2 Your job

Your first task is to design the database that your application will use. The goal of this task and
the next is to reach a correct database schema that could later be implemented in PostgreSQL.

E/R diagram You are to create an E/R diagram that correctly models the domain described
above. Hint: if your diagram does not contain (at least) one weak entity, (at least) one ISA
relationship, and (at least) one many-to-at-most-one relationship, you have done something
wrong. You can use any tool you like for this task, as long as you hand in your solution as
an image in one of the formats .png, .jpg, .gif or .pdf. The tool Dia [1] is available on the
school computer system, has a mode for ER diagrams, and can export diagrams to image
files, but using any other tool is also OK.

Relational schema When your E/R diagram is complete, you should translate it, using the
(mostly) mechanical translation rules [2], into a database schema consisting of a set of
relations, complete with column names, keys and references.

5 of 14

Functional dependencies Identify the functional dependencies that you expect should hold for
the domain. Do this starting from the domain description. Do not only look for functional
dependencies in your relation schemas! If you do, then any potential errors in your schema
would not be caught, nor will you find any extra constraints not already captured by the
relational structure! At least one such constraint exists in the domain. You should always
look for the functional dependencies in the domain description. Remember to check for
functional dependencies with multiple attributes on the left-hand side of the arrow.

Update based on constraints Update your relational schema with the extra constraints dis-
covered from your functional dependencies. Alternatively, argue why your schema should
not capture the constraint (see e.g. the difference between 3NF and BCNF for why not all
constraints can be captured). Further, do the same for any constraints needed to handle
cyclic relationships in your diagram.

3.3 What to submit

You should submit 4 files. Files with a “.txt” suffix are text files.

diagram.X your E/R diagram, where .X is one of .png, .jpg, .gif or .pdf.

schema1.txt the database schema that you get from translating the diagram into tables.
Clearly mark keys (e.g. key). If any attribute can be null, indicate so by writing (nul-
lable) or similar next to it. If you have made any non-obvious choices, when choosing which
translation approach to use (e.g. ER or Null) include a comment about why you decided
on using it.

fds.txt the full list of functional dependencies that you have identified for the domain.

schema2.txt the database schema that you get after updating your schema1.txt with any added
constraints found because of the functional dependency analysis.

6 of 14

4 Task 2: Constructing the database

Task 2 was last updated on 1 February 2017

Deadline for first submission: Sunday 19 February 2017
Deadline for last resubmission: Sunday 12 March 2017

4.1 Description

The previous task modeled a world with countries, cities, towns, roads, hotels and people. This
world is the stage for a game where some rules apply.

In this task, you will implement part of this game as a PostgreSQL database with tables, views
and triggers. To avoid unnecessary overhead because of wildly divergent solutions, everyone will
start Task 2 from this given relational database schema:

Countr ies (name)

Areas (country , name , populat ion)
country −> Countr ies . name

Towns(country , name)
country , name −> Areas . (country , name)

C i t i e s (country , name , v i s i t bonu s)
country , name −> Areas . (country , name)

Persons (country , personnummer , name , l oca t i oncount ry , l o ca t i ona r ea , budget)
country −> Countr ies . name
locat i oncount ry , l o c a t i ona r e a −> Areas . (country , name)

Hote l s (name , l o ca t i oncount ry , locat ionname , ownercountry ,
ownerpersonnummer)
l ocat i oncount ry , locat ionname −> C i t i e s . (country , name)
ownercountry , ownerpersonnummer −> Persons . (country , personnummer)

Roads (fromcountry , fromarea , tocountry , toarea , ownercountry ,
ownerpersonnummer , roadtax)
fromcountry , fromarea −> Areas . (country , name)
tocountry , toarea −> Areas . (country , name)
ownercountry , ownerpersonnummer −> Persons . (country , personnummer)

Please note that this relational database schema is different from Task 1’s solution.

4.1.1 Predefined constants and functions

The game uses a number of constants (such as the price of a road) that should not be hard-coded
into your solution. Instead, we provide an SQL file with an SQL table (called Constants) with
constants and their values, and a handy SQL function (called getval() to access them.

You should use the getval() function whenever you require a certain constant in a compu-
tation.

7 of 14

For instance, if you wish to decrease a Person’s budget with the price of a road, you should use
the following statement which retrieves the constant ‘roadprice’ using the function getval():

UPDATE Persons SET budget = budget - getval(’roadprice ’) WHERE ...

To facilitate testing, we also provide a function assert() which compares two given values. If
the values match, nothing happens. If they do not match, an exception is raised. The assert()

function can be used in your unit tests to ensure that a computed value is what you expect it to
be.

For instance, if you want to ensure that a Person’s budget is 123.45, you can use the following
assert() invocation:

SELECT assert((SELECT budget FROM Persons WHERE ...), 123.45);

(Note: assert() can not be used by itself in SQL, since it is not a valid SQL statement. You
have to use it as part of a SELECT statement.)

The SQL file with predefined table (Constants) and functions (getval() and assert()) will
be preloaded into your database during testing (See further), and the file is also available on the
website for your own needs.

4.1.2 Game rules

In our little game world, there are some rules that define how Persons can interact with the
world. For this Task, these rules are important:

Traveling over roads costs money if the person travels over a road owned by another person,
the roadtax associated with that road is deducted from the traveling person’s budget and
added to the budget of the owner of the road. If the road is public, or owned by the
traveling person, no money is transferred.

Creating roads costs money Persons can create a new road between the area they are cur-
rently in, and any other area, as long as they do not already own a road between those
two areas. When a new road is created, the price of a road (getval(’roadprice’)) is
automatically deducted from the owner’s budget. The roadtax for new roads is set to
getval(’roadtax’).

Visiting a city can cost money If a person visits a city with hotels in it, the visiting person
must pay money (getval(’cityvisit’)). That money is distributed equally among all
people who own a hotel in that city. It does not matter whether a person visiting a city
owns a hotel in that city, the money must still be paid and distributed to the hotel owners
(i.e. the visiting person also gets a part of that money if he owns a hotel in that city). If
there are no hotels in the city, then the visiting person does not have to pay.

Persons can buy/sell a hotel Each person can buy one hotel per city. Hotels cost a fixed
amount (getval(’hotelprice’)), which is deducted from the Person’s budget. Persons
do not need to be in the city they wish to build a hotel in. When a Hotel is sold, the owner
gets back a fraction of the original price (getval(’hotelrefund’), a value between 0 and
1, indicates how much to refund of the hotel price. E.g. 0.4 means 40%).

Cities can offer visiting bonuses From time to time, a city may issue a “visiting bonus” to
attract visitors. This bonus is the visitbonus attribute of a city. The first person to reach
the city receives the full bonus. Any persons already in the city when the bonus is issued,

8 of 14

receive nothing. When a city issues a bonus to a visitor, the city’s visitbonus is transfered
fully to the Person’s budget. A city’s visiting bonus is increased through the course of the
game, but more on that in Task 3.

4.1.3 Personnummers

In contradiction to reality, we will assume that all countries use a personnummer with the exact
format “XXXXXXXX-XXXX”, where each X is a digit (0-9).

4.1.4 Negative numbers

Keep in mind that budgets, citybonus, population and roadtax can not be negative.

4.1.5 Unidirectional roads

In the game, roads are bidirectional (you can travel over them in both directions), but the
roads in the Roads table are unidirectional (they have a distinct start and end). For a certain
bidirectional road (denoted as A--B), we will not have 2 unidirectional roads in the Roads table
(denoted as A->B and B->A), but only one. Whenever we deal with roads, our program logic will
take into account the reverse road too.

4.1.6 Rounding

Unlike in mathematics, working with floating point numbers (real numbers with decimals after
the decimal point) is not always exact. Because of this, we consider two numbers equal when
they are equal up to two decimals after the decimal point. For instance, for our purposes we
consider 15.781641365 equal to 15.7852313453.

We use SQL’s built-in trunc() function for this, as you can see in the definition of our
predefined assert() function.

4.1.7 The government (public roads)

Roads can be public or owned by a Person. Because of our design, all roads must have an owner,
including public roads.

To get around this, we introduce “The Government” as an articial Person living in Country
’ ’ (the empty string) and with Personnummer ’ ’ (the empty string). Note that this violates
the constraint about the format of a personnummer, and you should make an exception for this
specific case.

The government has an infinite budget which you do not need to be concerned about. When-
ever money is about to added or removed from The government’s budget, you can just skip that
operation.

Because this artificial person can only be created after the Persons table is created (which
is your job), you must also create this person into that table.

You may use the following statements to insert this artificial person (Note that we create an
Area, since all Persons are located in an Area):

INSERT INTO Countries VALUES(’’);

INSERT INTO Countries VALUES(’Sweden ’);

INSERT INTO Areas VALUES(’Sweden ’, ’Gothenburg ’, 491630);

INSERT INTO Persons VALUES(’’, ’’, ’The government ’, ’Sweden ’, ’

Gothenburg ’, 100000000000);

9 of 14

4.2 Your job

You should create all tables, marking key and foreign key constraints in the process, and you
should also insert checks that ensure that only valid data can be inserted in the database.
Examples of invalid data would be a negative population for an Area.

Make sure that you follow the naming scheme of the tables and the attributes, as well as the
order of the attributes exactly.

Budgets and roadtax should not be stored as whole numbers. It is best to use the SQL type
NUMERIC for them.

We advise that you implement the views before the triggers, and that you implement and
maintain a set of unit tests as you progress.

4.2.1 Views

Create the following views:

NextMoves Gives an overview of the possible destinations a Person can go to, together with
the cost. This VIEW can be described as:

NextMoves (personcountry , personnummer , country , area , destcountry ,
destarea , co s t)
personcountry , personnummer −> Persons . (country , personnummer)
destcountry , de s ta r ea −> Areas . (country , name)
country , area −> Areas . (country , name)

{personcountry, personnummer} indicates the Person, {country, area} the current lo-
cation of that person, {destcountry, destarea} the possible destination and {cost} the
lowest cost to get to that destination. Keep in mind that Roads have a start and end-point,
but that it is possible to traverse them in the opposite direction too!

No INSERT, DELETE or UPDATE operations are allowed on this view.

AssetSummary Gives an overview of each person’s budget and assets. This VIEW can be
described as:

AssetSummary (country , personnummer , budget , a s s e t s , r e c l a imab l e)
country , personnummer −> Persons . (country , personnummer)

{country, personnummer} indicates the Person, {budget} the current budget of that
Person, {assets} the summed price of all Roads and Hotels owned by that Person,
{reclaimable} the total value that can be reclaimed by selling all hotels owned by that
Person.

No INSERT, DELETE or UPDATE operations are allowed on this view.

4.2.2 Triggers

INSERT/DELETE/UPDATE Roads When a road (A->B) is added, you must ensure that
the reverse road(B->A) is not already present for the same owner. Likewise, if a road (A--B)
is about to be deleted, either A->B or B->A may be present in the Roads table. You should
remove whichever one of those is present.

When a road is created by a Person, ensure that that Person is located at either the start-
point or end-point of that road, and deduct the price of the road (getval(’roadprice’))
from that Person’s budget.

10 of 14

Finally, make sure that only the roadtax field in a road can be updated, since the game
does not allow a road to change the start-point, end-point or owner.

UPDATE Persons A Person is always located in an Area. When a person moves, you must
ensure that there is a road between the old and new area that Person is in. If there are
multiple roads, use a free one if possible (a public road, or a road owned by that person),
otherwise find the cheapest road and deduct the roadtax from the Person’s budget before
updating the Person’s location to the new area.

When a person moves to a city, and there are hotels in that city, deduct getval(’cityvisit’)
for visiting a city from the Person’s budget and transfer that money equally to all hotelown-
ers that have a hotel in that city.

Finally, if a city has a visiting bonus, transfer it to the visiting Person.

INSERT/UPDATE Hotels When a hotel is created, the price of the hotel must be deducted
from that Person’s budget. Hotels can not be moved to a new city, but they can change
owner. Keep in mind that a Person can only own one Hotel per City. Persons can sell their
hotel, in which case the hotel is deleted from the Hotels table. When that happens, the
Person get refunded with a fraction (getval(’hotelrefund’)) of the price of the hotel
(getval(’hotelprice’)).

4.2.3 Unit tests

You should write unit tests to ensure that your database works as expected. This can be time-
consuming, but it is an important part of the development of a database. Each unit test is a set
of INSERT, UPDATE and/or DELETE statements, which fill the database with example data. Unit
tests should always assume an empty database (except for the predefined table and functions
discussed in Section 4.1.1).

Suggestion: Start a transaction at the beginning of a unit test and rollback at the end.
There should be unit tests to test success (E.g. creating a country with a valid name should

work), but also failure (E.g. creating a road with the same start-point and end-point should fail).
It is a good idea to implement unit tests first, describing behavior that should or should not

work, before implementing the database schema.

4.3 What to submit

You should submit a single ZIP file with the following contents:

a file named task2.sql The SQL definition of your database, including all views and triggers.

a directory named shouldwork A directory with .sql files containing your unit tests that
should result in success.

a directory named shouldfail A directory with .sql files containing your unit tests that
should result in failure.

11 of 14

5 Task 3: Writing a front end application

Task 3 was last updated on 6 February 2017

Deadline for first submission: Sunday 5 March 2017
Deadline for last resubmission: Sunday 12 March 2017

5.1 Your job

Your job for Task 3 is to implement the game in Java. We provide a skeleton program that you
should complete.

5.1.1 Game loop

The game goes through these steps:

1. Read a world definition file and create the world in the database.

2. Read player names and enter them in the database. Each player starts in a randomly
selected area in the world and receives a start budget of 1000.

3. Repeat YYY times:

(a) For each player, in the order they were registered: allow the player to inspect the
world and other players as much as wanted, and allow either 1 move, 1 purchase
(build a road or hotel) or 1 sale (sell a hotel). A player is not required to make a
move, purchase or sale.

(b) Finally, a visiting bonus of ZZZ is added to a randomly selected city.

4. The player with the highest budget wins the game.

5.1.2 World file format

Instead of hard-coding a fixed world into the game, the game will read a text-file containing a
“world description”, that is: a list of towns, cities and roads between them.

The world definition file contains a list of statements, one per line. These statements can be
any of the following:

TOWN <town name > <population >

CITY <city name > <population >

ROAD <start town or city name > <end town or city name >

To make it easier for you, assume there are no spaces in the town or city names.
An example world definition with only 2 areas and 1 road is the following:

TOWN Sigtuna 8444

CITY Gothenburg 549789

ROAD Sigtuna Gothenburg

12 of 14

5.1.3 Player turn

During each turn, the player can inspect the world and other players, as well as make a single
move, purchase or sale.

Show possible moves Give a list of directly-reachable destinations and the road-tax associated
with it, for a player-specified area. Not specifying an area means the player wants to see
this information for the area he is in right now.

Show player assets Give a list of roads and hotels owned by a certain player, or for the current
player if no player is specified.

Show scores Display an overview of all players with their current budget, assets and the re-
funded value if all that player’s hotels are sold.

5.2 What to submit

You should submit a single ZIP file with the following contents:

a file named task3.sql The SQL definition of your database, including all views and triggers,
as implemented (and accepted) from Task 2.

a file named Game.java The Java program to play the game. There should be a Game class
with a main() method to start the game, just like in the skeleton program.

13 of 14

References

[1] Dia. http://www.cse.chalmers.se/edu/course/TDA357/VT2017/lab/dia.html.

[2] ER diagram translation rules. http://www.cse.chalmers.se/edu/course/TDA357/

VT2017/_downloads/Translation.pdf.

[3] How to use Fire, submit solutions and request PostgreSQL credentials. http://www.cse.

chalmers.se/edu/course/TDA357/VT2017/lab/submission.html.

14 of 14

http://www.cse.chalmers.se/edu/course/TDA357/VT2017/lab/dia.html
http://www.cse.chalmers.se/edu/course/TDA357/VT2017/_downloads/Translation.pdf
http://www.cse.chalmers.se/edu/course/TDA357/VT2017/_downloads/Translation.pdf
http://www.cse.chalmers.se/edu/course/TDA357/VT2017/lab/submission.html
http://www.cse.chalmers.se/edu/course/TDA357/VT2017/lab/submission.html

	Introduction
	Purpose
	Structure
	Assignment submission and deadlines

	Task 0: Getting started
	Your job
	What to submit

	Task 1: Designing the database schema
	Domain description
	Your job
	What to submit

	Task 2: Constructing the database
	Description
	Predefined constants and functions
	Game rules
	Personnummers
	Negative numbers
	Unidirectional roads
	Rounding
	The government (public roads)

	Your job
	Views
	Triggers
	Unit tests

	What to submit

	Task 3: Writing a front end application
	Your job
	Game loop
	World file format
	Player turn

	What to submit

