Lecture 3

Database design Il

Normal Forms

TNF

- Atomic Attributes
ID_Number Name Address
3344 Zlatan Manchester
ID_Number Name Address
3344 Zlatan Manchester
3344 Zlatan Manchester

#Phone
63345,22523

#Phone
63345
22523

2NF

- 1NF + Partial Dependencies

ID Number Name Address Item_ID Description
3344 Zlatan Manchester 12 T-shrit

3344 Zlatan Manchester 14 pants

3345 Casillas Porto 14 pants

ID Number Name Address

3344 Zlatan Manchester item_ID ID_Number Description
3345 Casillas Porto 12 3344 T-shrit
14 3344 pants

14 3345 pants

3NF

- 2NF + FD’s
ID Number Name Address item_ID Description
3344 Zlatan Manchester 12 T-shrit
3344 Zlatan Manchester 14 pants
3345 Casillas Porto 14 pants
Iitem_ID Description
ID Number Name Address 12 T-shrit
3344 Zlatan Manchester 14 pants
3345 Casillas Porto
item_ID ID_Number
12 3344
14 3344
14 3345

Quiz time!

What's wrong with this schema?

Courses (code, period, name, teacher)

code — name
code, period — teacher

{ (' TDA357’, 2, |'Databases’ | 'Mickey’),
(' TDA357’, 4, |'Databases’ ,| 'Tweety’)}

Redundancy!

Using FDs to detect anomalies

 Whenever X — A holds for a relation R,
but X is not a key for R, then values of A
will be redundantly repeated!

Courses (code, period, name, teacher)

{ (! TDA357’', 2, ’'Databases’, ’'Mickey’),
(' TDA357’, 4, ’'Databases’, ’'Tweety’)}

code — name
code, period — teacher

Decomposition

Courses (code, period, name, teacher)

code — name
code, period — teacher

* Fix the problem by decomposing Courses:

— Create one relation with the attributes from the offending FD, in
this case code and name.

— Keep the original relation, but remove all attributes from the RHS
of the FD. Insert a reference from the LHS in this relation, to the
key in the first.

What?

Decomposition

Courses (code, period, name, teacher)

code — name
code, period — teacher

* Fix the problem by decomposing Courses:

— Create one relation with the attributes from the offending FD, in
this case code and name.

— Keep the original relation, but remove all attributes from the RHS
of the FD. Insert a reference from the LHS in this relation, to the

key in the first.

Courses (code, name)
GivenCourses (code, period, teacher)
code -> Courses.code

Boyce-Codd Normal Form

* A relation R is in BCNF if, whenever a
nontrivial FD X — A holdson R, X is a
superkey of R.

— every non-trivial FD of R has a key of R as
part of the LHS

— Remember: nontrivial means A is not part of X

— Remember: a superkey is any superset of a
Key (including the keys themselves).

Courses (code, name)
GivenCourses (code, period, teacher)

BCNF violations

 We say that a FD X — A violates BCNF
with respect to relation R if X — A holds
on R, but X is not a superkey or R.

Example: code — name violates BCNF for
the relation

Courses (code, period, name, teacher)

but code, period — teacher does not.

BCNF normalization

* Algorithm: Given a relation R and FDs F.

1. Compute F*, i.e. the closure of F.

2. Look among the FDs in F* for a violation
X — A of BCNF w.r.t. R.

3. Decompose R into two relations
— One relation RX containing all the attributes in X*.

— The original relation R, except the values in X* that are not
also in X (i.e. R — X* + X), and with a reference from X to X

in RX.

4. Repeat from 2 for the two new relations until there
are no more violations.

Quiz!

Decompose Courses into BCNF.

Courses (code, period, name, teacher)

Code — name | em Violates BCNF, so|we will kick it out of the relation
code, period — teacher

{code}t = {code, name} N

Coursesl (COde ’ name) 4—/Create new relation W

Courses2 (code, period, teacher)*___’,,//

code -> Coursesl.code Remove ‘name’ from old relation

and—add reference

No BCNF violations left, so we're done!

Recovery

 We must be able to recover the original data after
decomposition.

code |per| nhame teacher

TDA357 | 3 Databases | Mickey

TDA357 | 2 Databases | Tweety
code name @ code | per teacher
TDA357 | Databases * TDASST | 3 Mickey

@ TDA357 | 2 Tweety

code |per| nhame teacher

TDA357 | 3 Databases | Mickey

TDA357 | 2 Databases | Tweety

"Lossy join”

Let’s try to split on non-existant code — teacher

code | per| name teacher
TDA357 | 3 Databases | Mickey

E TDA357 | 2 Databases | Tweety %

code teacher code | per| nhame
TDA357 | Mickey + | TDA357 | 3 Databases
TDA357 | Tweety TDA357 | 2 Databases

5 &

What?

"Lossy join”

Let’s try to split on non-existant code — teacher

code | per| name teacher
TDA357 | 3 Databases | Mickey

E TDA357 | 2 Databases | Tweety %

code teacher code | per| nhame
TDA357 | Mickey + | TDA357 | 3 Databases
TDA357 | Tweety TDA357 | 2 Databases

code | per| name teacher
TDA357 Databases | Mickey
TDA357 Databases | Mickey

TDA357
TDA357

Databases | Tweety

N|WIN]|W

Databases | Tweety

Lossless join

* Only if we decompose on proper
dependencies can we guarantee that no
facts are lost.

— Schemas from proper translation of correct
E-R diagrams get this “for free”.

— The BCNF decomposition algorithm
guarantees lossless join.

* A decompositon that does not give
lossless join is bad.

Quiz!

Decompose Schedules into BCNF.

Schedules (code, name, period, numStudents, teacher,
room, numSeats, weekday, hour)

code — name

code, period — #students

code, period — teacher

room — #seats

code, period, weekday — hour

code, period, weekday — room

room, period, weekday, hour — code
teacher, period, weekday, hour — room

Done on blackboard.

Quiz result

Courses (code, name)

GivenCourses (course, period, #students, teacher)
course -> Courses.code

Rooms (name, #seats)

Lectures (course, period, room, weekday, hour)
(course, period) -> GivenCourses. (course, period)
room —> Rooms.name
(room, period, weekday, hour) unique

Same as what we got by translating our E-R diagram
(lecture 2), plus the extra uniqueness constraint!

Quiz: teacher, period, weekday, hour — room ?

Quiz again!

Why not use BCNF decomposition for designing
database schemas? Why go via E-R
diagrams?

— Decomposition doesn’t handle all situations
gracefully. E.g.
« Self-relationships
 Many-to-one vs. many-to-"exactly one”

* Subclasses
« Single-attribute entities

— E-R diagrams are graphical, hence easier to sell
than some "mathematical formulae”.

Quiz again!

Why use FDs and decomposition at all? Why not
just go via E-R diagrams?

— Some constraints ("physical reality”) are not
captured by E-R modelling.

— FDs/BCNF decomposition allows you to:

Prove that your design is free from redundancy (or
discover that it isn’t!).

. Spot dependency constraints that are not captured
(e.g. teacher, period, weekday, hour — room),
and do something sensible about them.

. Discover errors in your E-R model or translation to
relations.

Course

&>

Example

Gstudents

leenCourse

Teacher

Quiz: What'’s the problem?

Example
Gwoon>
Course leenCourse

We probably want to ensure that a teacher can only be
involved in giving a course that they know. We have no
formal syntax or theory for such "extra” constraints.

Example

Courses (code, name)

GivenCourses (course, period, #students, teacher)
course -> Courses.code

Teachers (name)

Knows (teacher, course)
teacher -> Teachers.name
course -> Courses.code

InvolvedIn (teacher, course, period)
teacher -> Teachers.name
(course, period) -> GivenCourses. (course, period)

Quiz: How can we fix the problem?

Example

Courses (code, name)

GivenCourses (course, period, #students, teacher)
course -> Courses.code

Teachers (name)

Knows (teacher, course)
teacher -> Teachers.name
course -> Courses.code

InvolvedIn (teacher, course, period)
teacher -> Teachers.name
(course, period) -> GivenCourses. (course, period)

Insert an extra reference!

(teacher, course) -> Knows (teacher, course)

Equality constraints

* FDs don't always give the full story.

« Equality constraints over circular
relationship paths are relatively common.

— Can sometimes — but not always — be
captured via extra references.

— Extra attributes may be needed — more on
that later...

Example of BCNF decomposition:

GivenCourses (course, period, teacher)

course -> Courses.code
Two keys:

course, period — teacher {course, period}

teacher — course . . {teacher, period}
ﬁ Violation!

Decompose:

Teaches (teacher, course)
course -> Courses.code

GivenCourses (period, teacher)
teacher -> Teaches. teacher

Quiz: What just went wrong?

Teaches (teacher, course)
course -> Courses.code

GivenCourses (period, teacher)
teacher -> Teaches. teacher

teacher course per teacher
Mickey TDA357 2 Mickey
Tweety TDA357 2 Tweety

[course | per teacher j
TDA357 |2 Mickey

TDA357 | 2 Tweety

course, period — teacher ??

Problem with BCNF

« Some structures cause problems for
decomposition.

- Ex:AB—-C,C—>B

— Decomposing w.r.t. C — B gets us two relations,
containing {C,B} and {A,C} respectively. This means
we can no longer enforce AB — C!

— Intuitively, the cause of the problem is that we must
split the LHS of AB — C over two different relations.
* Not quite the full truth, but good enough.

— (This is exactly what happened earlier with

teacher, period, weekday, hour — room !)

Third Normal Form (3NF)

* 3NF is a weakening of BCNF that handles
this situation.

— An attribute is prime in relation R if itis a
member of any key of R.

X — Ais in BCNF X — Aisin 3NF

Iff either: Iff either:

« X— Aisatrivial FD « X— Aisatrivial FD
« X s a superkey « X s a superkey

* A-X has only prime attributes

Different algorithm for ANF

 Given a relation R and a set of FDs F:

— Compute the minimal basis of F.

* Minimal basis means F*, except remove A — C if
you have A—-Band B — Cin F*.

— Group together FDs with the same LHS.

— For each group, create a relation with the LHS
as the key.

— If no relation contains a key of R, add one
relation containing only a key of R.

Example:

Courses (code, period, name, teacher)

code — name
code, period — teacher
teacher — code

Two keys:
{course, period}
{teacher, period}

teacher—name
Decompose:

Courses (code, name)

GivenCourses (course, period, teacher)
course -> Courses.code
teacher -> Teaches. teacher

Teaches (teacher, course)
course -> Courses.code

GivenCourses contains a key for the original Courses
relation, so we are done.

Earlier example revisited:

GivenCourses (course, period, teacher)

course -> Courses.code

course, period — teacher
teacher — course

Two keys:
{course, period}
{teacher, period}

Since all attributes are members of some key, i.e.
all attributes are prime, there are no 3NF
violations. Hence GivenCourses is in 3NF.

Quiz: What's the problem now then?

One 3NF solution for scheduler

Courses (code, name)

GivenCourses (course, period, #students, teacher)
course -> Courses.code

Rooms (name, #seats)

Lectures (course, period, room, weekday, hour, teacher}

(course, period,lteacherl ->
GivenCo . (Course, period, | teacher))

room -> Rooms.name
(room, period, weekday, hour) unique
kteacher, period, weekday, hour) unique

Quiz: What's the problem now then?

Redundancy with 3NF

GivenCourses (course, period, teacher)
course -> Courses.code

Two keys:
course, period — teacher {course, period}

teacher — course {teacher, period}

GivenCourses is in 3NF. But teacher — course

violates BCNF, since teacher is not a key. As a
result, course will be redundantly repeated!

3NF vs BCNF

 Three important properties of decomposition:
1. Recovery (loss-less join)
2. No redundancy
3. Dependency preservation

 3NF guarantees 1 and 3, but not 2.

 BCNF guarantees 1 and (almost) 2, but not 3.

— 3 can sometimes be recovered separately through
"assertions” (costly). More on this later.

Almost?

Example:

Courses (code, name, room, teacher)

code — name code | room teacher
TDA357 | VR Mickey
code name TDA357 | VR Tweety
TDA357 Databases TDA357 | HC1 Mickey

TDA357 | HC1 Tweety

These two relations are in BCNF, but there’s lots of
redundancy!

Quiz: Why?

Next time, Lecture 4

Independencies and 4NF

