
Priority queues

Priority queues

A priority queue has three operations:
● insert: add a new element
● find minimum: return the smallest element
● delete minimum: remove the smallest element

Similar idea to a stack or a queue, but:
● you get the smallest element out

Alternatively, you give each element a
priority when you insert it; you get out the
smallest(highest)-priority element.

Applications

A natural application for priority queues is to
handle access to a limited resource where the
resource users can be assigned different
degree of urgency.

● An electronic queueing system for an
emergency room where the patients’
conditions varies in severity.

● Processes with priority levels queueing for
resources (such as computation time).

An inefficient priority queue

Idea 1: implement a priority queue as a
dynamic array
● Insert: add new element to end of array
O(1)

● Find minimum: linear search through array
O(n)

● Delete minimum: find and remove minimum element
O(n)

Finding and removing the minimum is quite
expensive.

An inefficient priority queue

Idea 2: use a array sorted in descending order
● Insert: insert new element in right place

O(n)
● Find minimum: minimum is last element

O(1)
● Delete minimum: remove last element

O(1)

Finding and removing the minimum is
cheap! But insertion got expensive.

Invariants

By making the array sorted...
● Finding the minimum got easier
● But insertion got harder

“The array is sorted” is an example of a data
structure invariant
● A property picked by the data structure designer, that

always holds
● Insert, find minimum and delete minimum can assume

that the invariant holds (the array is sorted)
● ...but they must make sure it remains sorted

afterwards (preserve the invariant)

Pre-, postconditions and invariants

● Preconditions – requirements on a function’s
input (not expressed by types) that must
hold when it’s called.

● Postcondition – requirements on a function’s
output that will hold when it returns.

● Invariants – requirements on data that exists
in between function calls. In Java this
typically means requirements on an object’s
instance variables. Invariants can be seen
being pre- and postconditions that are added
to all instance methods of a class.

More on invariants

Choosing the right invariant is the most
important step in data structure design!
A good invariant adds some extra structure
that:
● makes it easy to get at the data

(the invariant is useful)
● without making it hard to update the data

(it's not too hard to preserve the invariant)

Finding the right invariant takes a lot of
practice!

How not to do it

Here is how not to design a data structure:
1. Take the operations you have to implement
2. Think very hard about how to implement them
3. Bash something together that seems to work

Because:
● You will probably have lots of bugs
● You will probably miss the best solution

Data structure design

How to design a data structure:
● Pick a representation

Here: we represent the priority queue by a binary tree
● Pick an invariant

Here: the heap property and completeness

Once you have the right representation and
invariant, the operations often almost “design
themselves”!
● There is often only one way to implement them

You could say...
data structure = representation + invariant

Picking a representation and invariant

How do you know which representation and
invariant to go for?
Good plan: have a first guess, see if the operations
work out, then tweak it
● Queues: at first we tried a dynamic array, but there was no

way to efficiently remove items, so we switched to a circular
array

● Priority queues: at first we tried a sorted array, but then
remove minimum needed to delete the first element
(inefficient). Then we tried a tree instead. Putting the
smallest element at the root led us to the heap property.

Takes practice!

Checking the invariant

What happens if you break the invariant?
● e.g., insert simply adds the new element to the end of

the heap

Answer: nothing goes wrong straight away,
but later operations might fail
● A later find minimum might return the wrong answer!

These kind of bugs are a nightmare to track
down!
Solution: check the invariant

Checking the invariant in Java

Define a method
boolean invariant()

that returns true if the invariant holds
● in this case, if the array is reverse-sorted

Then, in the implementation of every
operation, do

assert invariant();

This will throw an exception if the invariant
doesn't hold!
(Note: must run program with -ea)

Invariants in Haskell

Define a function
invariant :: ReprType → Bool

Then add an extra case to all operations:
anOperation x =
 assert (invariant x) $
 theActualCode

For ghc, checking assertions is enabled by
default. Disable it by giving option -O or
-fignore-asserts.

Checking invariants

Writing down and checking invariants will
help you find bugs much more easily
● Very many data structure bugs involve breaking an

invariant
● Even if you don't think about an invariant, if your

data structure is at all fancy there is probably one
hiding there!

● Almost all programming languages support
assertions – use them to check invariants and make
your life easier

Example: Implementing priority queue

● Implement prio queue using inefficient idea
2.

● Both in Java and Haskell
● Uses assertions with invariant
● Also example of generics and
Comparator/Ord.

● See code in lecture material.

Implementing priority queues
using binary heaps

Trees

A tree is a hierarchical data structure
● Each node can have several children but only has one

parent
● The root has no parents; there is only one root

Example: expression tree
Example:
directory hierarchy

+

3 4 *

5 6

Binary trees

Very often we use binary trees, where each node has at most
two children
class Node<E> {
 E value;
 Node<E> left, right;
}

data Tree a
 = Node a (Tree a) (Tree a)
 | Nil

Note that these two binary trees are not considered
the same:

Can be null

A

B

A

B
≠

(left) child
of hamster

parent of gorilla
ancestor of ape

root

leafsiblings

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

left subtree or branch
of owl

Terminology

descendant of
hamster

apeape

path
node

Terminology
height = length of longest path from root to leaf
size = number of nodes in tree
depth/level of node = length of path to root

height 2
size 4

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Tree traversal

● Two major modes of tree traversal (visiting
all nodes):
● DFS, depth-first search. For binary trees there are

three variants:
– Pre-order
– In-order
– Post-order

● BFS, breadth-first search.

● See the following slides for visualisations.

Pre-order traversal

C E H

A D I

B G

F

First current node,
then left sub tree,
then right sub tree

In-order traversal

C E H

A D I

B G

F
First left sub tree,
then current node,
then right sub tree

Post-order traversal

C E H

A D I

B G

F

First left sub tree,
then right sub tree,
then current node

Breadth-first search

C E H

A D I

B G

F

Each level from left to right

Balanced trees

A tree can be balanced or unbalanced. A balanced tree has
restrictions on its shape so that it’s not too high. A perfect
binary tree (all leaves on the same level) has size 2h+1 – 1.

If a tree of size n is
● balanced, its height is O(log n)
● unbalanced, its height could be O(n)

Many tree algorithms have complexity O(height of tree), so are
efficient on balanced trees and less so on unbalanced trees
Normally: balanced trees good, unbalanced bad!

Heaps – representation

A heap implements a priority queue as
abinary tree. Here is a tree:

This is not yet a heap. We need to add an
invariant that makes it easy to find the
minimum element.

28

29 20

18 8 74 39

37 32 89 66

The heap property

A tree satisfies the heap property if the value
of each node is less than (or equal to) the
value of its children:

Where can we find the smallest element?

8

18 29

37 32 74 89

20 28 39 66

Root node is the
smallest –

can find minimum
in O(1) time

Why the heap property

Why did we pick this invariant? One reason:
● It puts the smallest element at the root of the tree, so we can find

it in O(1) time

Why not just have the invariant “the root node is the
smallest”? Because:
● Trees are a recursive structure – the children of a node are also

trees
● It's then a good rule of thumb to have a recursive invariant –

each node of the tree should satisfy the same sort of property
● In this case, instead of “the root node is smaller than its

descendants”, we pick “each node is smaller than its descendants”

General hint: when using a tree data structure, make each
node have the same invariant

Binary heap

A binary heap is a complete binary tree that
satisfies the heap property:

Complete means that all levels except the
bottom one are full, and the bottom level is
filled from left to right (see above)

8

18 29

37 26 76 32 74

20 28 39 66

Level 1

Level 2

Level 3

Level 4

Complete binary tree

● The height is O(log n) since 2h ≤ n ≤ 2h+1 – 1
● So complete trees are balanced.
● If we manage to implement operations with

complexity O(h) then they will be O(log n)

Why completeness?

There are a couple of reasons why we choose
to have a complete tree:
● It makes sure the tree is balanced
● When we insert a new element, it means there is only

one place the element can go – this is one less design
decision we have to make

There's a third one which we will see a bit
later!

Binary heap invariant

The binary heap invariant:
● The tree must be complete
● It must have the heap property (each node is less than

or equal to its children)

Remember, all our operations must preserve
this invariant

Heap or not?

8

18 29

20 28 66

8

18 29

20 28

8

28 29

20 18 39 66

8

8 78

20 95 85

39

Heap or not?

8

18 29

20 28 66

8

18 29

20 28

8

28 29

20 18 39 66

8

8 78

20 95 85

39

No:
not complete

No:
not complete

No:
28 > 18Yes

Adding an element to a binary heap

Step 1: insert the element at the next empty
position in the tree

This might break the heap invariant!
In this case, 12 is less than 66, its parent.

8

18 29

37 26 76 32 74 89

20 28 39 66

12

An aside

To modify a data structure with an invariant,
we have to
● modify it,
● while preserving the invariant

Often it's easier to separate these:
● first modify the data structure, possibly breaking the

invariant in the process
● then “repair” the data structure, making the invariant

true again

This is what we are going to do here

Adding an element to a binary heap

Step 2: if the new element is less than its
parent, swap it with its parent

8

18 29

37 26 76 32 74 89

20 28 39 66

12

Adding an element to a binary heap

Step 2: if the new element is less than its
parent, swap it with its parent

The invariant is still broken, since 12 is less
than 29, its new parent

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Adding an element to a binary heap

Repeat step 2 until the new element is
greater than or equal to its parent.

Now 12 is in its right place, and the invariant
is restored. (Think about why this algorithm
restores the invariant.)

8

18 12

37 26 76 32 74 89

20 28 39 29

66

Why this works

At every step, the heap property almost
holds except that the new element might be
less than its parent
After swapping the element and its parent,
still only the new element can be in the
wrong place (why?)

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Removing the minimum element

To remove the minimum element, we are
going to follow a similar scheme as for
insertion:
● First remove the minimum (root) element from the

tree somehow, breaking the invariant in the process
● Then repair the invariant

Because of completeness, we can only really
remove the last (bottom-right) element from
the tree
● Solution: first swap the root element with the last

element, then remove the last element

Removing the minimum element

Step 1: replace the root element with the last
element in the tree, and remove the last
element

The invariant is broken, because 66 is greater
than its children

66

18 12

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 2: if the moved element is greater than
its children, swap it with its least child

(Why the least child in particular?)

66

18 12

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 2: if the moved element is greater than
its children, swap it with its least child

(Why the least child in particular?)

12

18 66

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 3: repeat until the moved element is less
than or equal to its children

12

18 29

37 26 76 32 74 89

20 28 39 66

Sifting

Two useful operations we can extract from
all this
Sift up: if an element might be less than its
parent, i.e. needs “moving up” (used in insert)
● Repeatedly swap the element with its parent

Sift down: if an element might be greater
than its children, i.e. needs “moving down”
(used in removing the minimum element)
● Repeatedly swap the element with its least child

Binary heaps – summary so far

Implementation of priority queues
● Heap property – means smallest value is always at root
● Completeness – means tree is always balanced

Complexity:
● find minimum – O(1)
● insert, delete minimum –

O(height of tree), O(log n) because tree is balanced

Binary heaps are arrays!

A binary heap is really implemented using an
array!

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Possible because
of completeness

property

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

P
arent

L. C
hild

R
. C

hild

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

P
arent

L. C
hild

R
. C

hild

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

P
arent

L. C
hild

R
. C

hild

Parent position

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

The parent of node i
is at index (i-1)/2

P
arent

C
h

ild

Reminder: inserting into a binary heap

To insert an element into a binary heap:
● Add the new element at the end of the heap
● Sift the element up: while the element is less than its

parent, swap it with its parent

We can do exactly the same thing for a
binary heap represented as an array!

Inserting into a binary heap

Step 1: add the new element to the end of the
array, set child to its index

6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 66 37 26 76 32 74 89

13
8

C
h
i
l
d

8

Inserting into a binary heap

Step 2: compute parent = (child-1)/2

6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 66 37 26 76 32 74 89

13
8

C
h
i
l
d

P
a
r
e
n
t

8

Inserting into a binary heap

Step 3: if array[parent] > array[child],
swap them

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 8 37 26 76 32 74 89

13
66

C
h
i
l
d

P
a
r
e
n
t

66

Inserting into a binary heap

Step 4: set child = parent, parent =
(child – 1) / 2, and repeat

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 8 37 26 76 32 74 89

13
66

66C
h
i
l
d

P
a
r
e
n
t

Inserting into a binary heap

Step 4: set child = parent, parent =
(child – 1) / 2, and repeat

6

18 8

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6
6 18 8 20 28 39 29 37 26 76 32 74 89

13
66

66C
h
i
l
d

P
a
r
e
n
t

Binary heaps as arrays

Binary heaps are “morally” trees
● This is how we view them when we design the heap

algorithms

But we implement the tree as an array
● The actual implementation translates these tree

concepts to use arrays

When you see a binary heap shown as a tree,
you should also keep the array view in your
head (and vice versa!)

Heap sort

Binary heaps can be used to sort arrays.

Sorting a list:
● Start with an empty priority queue
● Add each element of the input list in turn
● Repeatedly find and remove the smallest element
● You get all elements out in ascending order!

Using a binary heap like this is called Heap
sort. It’s complexity is O(n log n).

Heap sort

● Heap sort can be done by using the original
array as starting point and apply the build-
heap algorithm.

● Build-heap actually runs in O(n), but
repeatedly extracting the minimum element
makes the overall complexity O(n log n)
anyway.

● If a max-heap is built instead of a min-heap,
the minum element can be extracted and
moved to the end in each step. This makes
heap sort in-place.

Today

Main topic was binary heaps, but it was also
about how to design data structures
● The main task is not how to implement the operations,

but choosing the right representation and invariant
● These are the main design decisions – once you

choose them, lots of stuff falls into place
● Understanding them is the best way to understand a

data structure, and checking invariants is a very good
way of avoiding bugs!

But you also need lots of existing data
structures to get inspiration from!
● Many of these in the rest of the course

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

