Types for programs and proofs
Take home exam 2017

Deadline: Friday 20 October at 12.00.
Answers are submitted in the Fire system.

Grades: Chalmers: 3 =24 p,4 =36 p, 5 =48 p. GU: G = 24 p, VG = 48 p. Bonus points from
talks and homework will be added.

The maximum score of the exam is 60 p. (In addition to this there is an optional problem worth
4p.)

Note that this is an individual exam. You are not allowed to help each other. If we discover that you
have collaborated, both the helper and the helped will fail the whole exam. We will also consider
disciplinary measures.

Please contact Peter or Thierry if there is an ambiguity in a question or something else is unclear.
We will publish any corrections and additions on the course homepage.

. Programming with lists in Agda. You may start with the code in the file List.agda presented in
the lectures.

(a) Write a function length that computes the length of a list.
(b) Write a function snoc which adds an element at the end of a list.
(¢) Write a proof in Agda which shows that snoc increases the length of a list by 1.
(d) Write a function reverse which reverses a list.

)

(e) Write a proof in Agda which shows that the length of a list is preserved by reverse.
(5p)

. Programming with vectors in Agda. You may start with the code in the file Vector.agda presented
in the lectures.

(a) Write a function vsnoc which adds an element at the end of a vector. The type should record
that the length of the vector is increased by 1.

(b) Write a function vreverse which reverses a vector. The type should record that the length
of the vector is preserved by vreverse.

3 p)
. Reasoning about equivalence and isomorphism in Agda.

(a) Define logical equivalence in Agda! Two propositions A, B : Set are logically equivalent
(A < B) if they imply each other.

—~
=

o,
_ O

Prove reflexivity of logical equivalence, that is, that A < A.
Prove symmetry of logical equivalence.

Prove transitivity of logical equivalence.

—
@

Define isomorphism in Agda! Two propositions A, B : Set are isomorphic (A = B) if there
are functions f : A — B and g : B — A which are mutually inverse.

(f) Prove in Agda that A= B — A < B for all A, B : Set.
(g) Prove in Agda that it is not the case that (A< B — A= B) for all A, B : Set.

4.

(a)

(6 p)

In one of his lectures Thierry presented a simplified version of a classic proof of compiler
correctness by McCarthy and Painter. The main theorem (0.1) refers to the relation —*,
the reflexive-transitive closure of the relation of ”small step semantics” for the machine in
question. Thierry defined the reflexive-transitive closure R* of an arbitrary relation R by an
inductive definitions as follows (cf Homework 3): it is the least relation R* such that

e R* is reflexive

e if aRb and bR*c then aR*c
However, in Peter’s formalization of this proof in McCarthyPainter.agda, he used a different

definition of reflexive-transitive closre. Modify Peter’s proof so that it instead uses the above
definition.

Extend (in Agda) the compiler correctness proof to a source language with a successor oper-
ation, that is, the grammar of the source language is now

ex=nl|e+e| succe

Hint. You need to extend

e the data type Expr of source language expression with succ

the function val;
e the data type Code of machine language with an instruction SUC;

the notion of one-step reduction = with a clause sucstep;

and finally extend the compiler correctness proof.

An optional question is to extend the proof to the whole language of arithmetic expressions!

In order to avoid handling type-errors you can implement false by 0 and true by the numbers
greater than 0. (Optional, 4 p)

Define an Agda record corresponding to Haskell’s Ord class!
https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-Ord.html
It suffices if your class has a few operations (e g compare, <, <).

Define the two instances Bool and Nat.

Write down a few axioms characterizing the property that you have a total order (see wikipedia
for the definition).

Finally prove that your instances satisfies those axiom.

Explain what the subclass declaration Eq a => 0rd a would mean for Agda records. (Op-
tional, 4 p)

6. Add a natrec construct to the simply typed A-calculus from the Agda lecture in week 6. natrec
is a primitive recursion combinator. It takes three arguments: the first is the base case, the second
is the step case, and the third is a natural number. It should have the following typing rule and
semantics

I'Fnatrec A: A= (nat= A= A)=nat= A

natrec A z s zero— z

natrec A z s (suc n) — s n (natrec A z s n)

a) Extend the raw and well-typed terms in Term.agda.

(a)
(b)
(c)

)

(d) Using natrec, define raw terms

Extend the well-typed evaluator in Term/Eval.agda.
Extend the type checker in TypeCheck.agda.

add : RawTerm
mul : RawTerm
fac : RawTerm

implementing addition, multiplication, and the factorial function. Addition and multiplication
should have type nat => nat => nat and factorial should have type nat => nat.
Verify that your raw terms are correct by proving

facCheck : evalRaw nat (app fac (lit 6)) = pure 720
facCheck = refl

(evalRaw is defined in Main.agda)

(8 p)

7. In this question we follow the note on simply typed lambda-calculus which you can find on the
home page of the course. Each question can be solved informally or using Agda (except the last
question, which has to be in Agda).

We define N(c) to mean Jv (¢ —* v) which expresses that ¢ normalizes.

(a) Prove Theorem 2.
(6 p)
(b) Prove Lemmas 1 and 2.
(6 p)
(¢) Define by induction on the type A a value 04 : A. Use this to prove that if ¢ : B where B is
an arbitrary type then we have N(c)
Hint: A Lemma can be that N(c) holds whenever N(c ¢’) holds.
(6 p)
(d) Define internally in Agda the term of type N

tn, = (((...((twice, twice,_1) twice,_2)...) twiceg) S) z

so that t,, is a term of type N. So in Agda, you have to define a function of type Nat — Term
where Nat is the type of natural numbers and Term the type of terms.

Hint: Try first to generalize the question.
(6 p)

