
Model-Based Testing
(DIT848 / DAT261)

Spring 2017
Lecture 10

Executable Tests (in ModelJUnit)
and EFSMs

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

 1

Summary of our previous lecture
on MBT and ModelJUnit

�  The	Qui-Donc	example	

� Modeling	Qui-Donc	with	an	FSM	

�  Some	simple	techniques	on	how	to	generate	tests	from	
the	Qui-Donc	model	

�  EFSM		

�  The	ModelJUnit	library	

�  A	Java	”implementaEon”	of	an	EFSM	for	the	Qui-Donc	
example	
�  Offline	tesEng	(not	executable)	

2

Outline

	

�  Executable	tests	
�  Online	tesEng	with	ModelJUnit	

� More	interacEve	exercises	on	building	an	EFSM	

3

Making your tests executable
�  Usually	tests	extracted	from	an	(E)FSM	are	quite	abstract	->	

need	to	make	them	executable	
�  The	API	of	the	model	doesn’t	match	the	API	of	the	SUT	

�  Some	common	abstracEons	make	difficult	such	match	
�  Model	one	aspect	of	SUT,	not	whole	behavior	
�  Omit	inputs	and	outputs	which	are	not	relevant	
�  Simplify	complex	data	structures	
�  Assume	SUT	is	in	the	correct	state	for	the	test	
�  Define	one	model	acEon	as	represenEng	a	sequence	of	SUT	acEons	

�  We	must	iniEalize	the	SUT,	add	missing	details	and	fix	
mistmatches	between	the	APIs		

This	concreEzaEon	phase	may	take	as	much	Eme	as	modeling!		
4

How to Concretize Abstract Tests
�  To	check	SUT	outputs	we	must	either:	
�  Transform	the	expected	outputs	from	the	model	into	

concrete	values	
�  Get	concrete	outputs	from	the	SUT	and	transform	them	into	

abstract	values	at	the	model	

	Some	issues:	

�  Objects	in	SUT	->	must	keep	track	of	idenEty	(not	only	values)	

�  Need	to	maintain	a	map	between	abstract	and	concrete	
objects	
�  Each	Eme	model	creates	a	new	abstract	value	A	->	SUT	creates	a	

concrete	object	C	(add	pair	(A,C)	to	the	map	table)	

�  Different	approaches	to	do	so…		 5

How to Concretize Abstract Tests

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard
book: Fig. 8.1 pp.285

�  AdaptaEon:	Write	a	wrapper	(adaptor)	around	the	SUT	to	
provide	a	more	abstract	view	of	SUT	

�  TransformaEon:	Transform	abstract	tests	into	concrete	
test	scripts	

	

6

The Adaptation Approach
�  The	adaptor	code	acts	as	an	interpreter	for	abstract	
opera2on	calls	of	model,	execuEng	them	in	SUT	(on-the-
fly	while	abstract	tests	are	generated)	

Adaptors	responsible	for:	

�  Setup:	configuring	and	iniEalizing	the	SUT	
�  Concre2za2on:	translate	model	abstract	operaEon	call	
(and	inputs)	into	SUT	concrete	calls	(and	inputs)	

�  Abstrac2on:	translate	back	concrete	results	into	abstract	
values	to	the	model	

�  Teardown:	shut	down	SUT	at	end	of	each	test	suite,	to	
prepare	for	next	test	suite	 7

The Transformation Approach
�  Test	scripts	are	produced	in	the	transformaEon	approach	
to	transform	each	abstract	test	into	an	executable	one	

What	is	needed:	

�  Setup	and	teardown	code	at	the	beginning	and	end	of	
each	test	sequence	

�  A	complex	template:	many	SUT	operaEons	to	implement	
1	abstract	operaEon;	trap	SUT	excepEons	to	check	
whether	expected	or	not,	etc.	

�  A	mapping	from	each	abstract	value	to	a	concrete	one	

�  A	complex	test	script	with	condiEonals	to	check	SUT	
outputs	when	non-determinism	 8

Which Approach is Better?
�  AdaptaEon	be_er	for	online	tesEng	

�  Tightly	integrated,	two-way	connecEon	between	MBT	tool	and	
SUT	

�  TransformaEon	has	the	advantage	of	producing	tests	
scripts	in	the	same	language	(same	naming,	structure)	as	
used	in	manual	tests	
�  Good	for	offline	tesEng	(less	disrupEon)	

�  Good	to	combine	both	(mixed)	
�  Abstract	tests	transformed	into	executable	test	scripts	which	

call	an	adaptor	layer	to	handle	low-level	SUT	operaEons	
9

Online Testing in ModelJUnit
Example: Set<String>

ImplementaEon	of	Set<String>	

�  StringSet.java	
�  A	simple	implementaEon	of	a	set	of	strings	

�  SimpleSet.java	
�  A	simplified	model	of	a	set	of	elements		
�  Only	the	model	(no	adaptor):	could	be	used	to	generate	offline	

tests	
�  The	model	assumes	a	set	with	maximum	two	elements	

�  SimpleSetWithAdaptor.java	
�  Like	SimpleSet	but	with	adaptor	code	
�  Allow	to	do	online	tesEng	of	a	Set<String>	implementaEon	

* Examples and source codes from the ModelJUnit distribution (under
subdirectory “examples2.0”)- Copyright (C) 2007 Mark Utting

Note:	In	the	following	
slides		we	do	not	include	
the	”import”	packages	–	
See	the	distribuEon	for	
full	code	

10

Online Testing in ModelJUnit
Implementation: StringSet

public	class	StringSet	extends	AbstractSet<String>	
{	private	ArrayList<String>	contents	=	new	ArrayList<String>();	
	
		@Override	
		public	Iterator<String>	iterator()	
		{	return	contents.iterator();	}	
	
		@Override	
		public	int	size()	
		{	return	contents.size();	}	
	
		@Override	
		public	boolean	equals(Object	arg0)	
		{		boolean	same	=	false;	
				if	(arg0	instanceof	Set)	{	
						Set<String>	other	=	(Set<String>)	arg0;	
						same	=	size()	==	other.size();	
						for	(int	i	=	contents.size()	-	1;	same	&&	i	>=	0;	i--)	{	
								if	(!other.contains(contents.get(i)))	
										same	=	false;	}	}	
				return	same;	}	
	
		@Override	
		public	void	clear()	
		{	contents.clear();	}	 * Examples and source codes from the ModelJUnit distribution (under

subdirectory “examples2.0”)- Copyright (C) 2007 Mark Utting

 	@Override	
		public	boolean	contains(Object	arg0)	
		{	for	(int	i	=	contents.size()	-	1;	i	>=	0;	i--)	{	
						if	(contents.get(i).equals(arg0))	
								return	true;	}	//	return	immediately		
				return	false;	}	//	none	match	
	
		@Override	
		public	boolean	isEmpty()	
		{	return	contents.size()	==	0;	}	
	
		@Override	
		public	boolean	add(String	e)	
		{	if	(e	==	null)	{	
						throw	new	NullPointerExcepEon();	}	
				if	(contents.contains(e))	{	
						return	false;	}	
				else	{	
						return	contents.add(e);	}	}	//	always	adds	to	end	
	
		@Override	
		public	boolean	remove(Object	o)	
		{	if	(contents.isEmpty())	
						return	false;	
				else	
						return	contents.remove(o);	}	
}	 11

Online Testing in ModelJUnit
EFSM (2-elem set)

�  Set:	S	=	{s1,	s2}	
�  RepresentaEon:		

S	=	<x,y>,	where	x=T	if	s1	in	S	
and	y=T	if	s2	in	S	

�  4	states:	
�  FF	->	S	is	empty	
�  FT	->	S	contains	s2	
�  TF	->	S	contains	s1	
�  TT	->	S	contains	both		

s1	and	s2	

�  AcEons:	removeS1,	addS1,	
removeS2,	addS2,	reset	

FF

TF

TT

FT

removeS1

removeS1

addS1

removeS1

removeS1
removeS2

removeS2

removeS2

addS2
addS1

addS2

removeS2

Note:	Not	included	the	”reset”	acEon	from	each	state	to	state	FF	
Also,	loops	with	”addS1”	(in	TF	and	TT),	and	”addS2”	(in	FT	and	TT)	are	
missing	(You	could	also	have	an	implementaEon		with	no	loops)	

12

Online Testing in ModelJUnit
EFSM: SimpleSet

�  So,	in	the	ModelJUnit	implementaEon	of	the	set,	instead	
of	changing	state	explicitly,	acEons	simply	states	how	the	
”internal”	variables	change	
�  addS1()	->	is	applicable	only	from	a	state	where	s1	becomes	

true	aoer	applying	the	acEon	
�  removeS1()	->	is	only	enabled	from	a	state	where	aoer	applying	

the	acEon	s1	becomes	false	

13

Online Testing in ModelJUnit
EFSM: SimpleSet

* Examples and source codes from the ModelJUnit distribution (under
subdirectory “examples2.0”)- Copyright (C) 2007 Mark Utting

 	public	class	SimpleSet	implements	FsmModel	
{	protected	boolean	s1,	s2;	
	
		public	Object	getState()	
		{	return	(s1	?	"T"	:	"F")	+	(s2	?	"T"	:	"F");	}	
	
		public	void	reset(boolean	tesEng)	
		{	s1	=	false;	s2	=	false;	}	
	
		@AcEon	public	void	addS1()	{s1	=	true;}	
		@AcEon	public	void	addS2()	{s2	=	true;}	
		@AcEon	public	void	removeS1()	{s1	=	false;}	
		@AcEon	public	void	removeS2()	{s2	=	false;}		
	
public	staEc	void	main(String[]	args)	
		{		Tester	tester	=	new	GreedyTester(new	SimpleSet());	
				tester.addListener(new	VerboseListener());	
				tester.generate(100);	}	
}	
	

4 states: TT,
TF, FT, FF

reset transition
from all states

to FF

Define action to add
elem S1 to set:

from any state to
the state TX

Example to
generate

tests from
the model

Define action to
remove elem S1:
from any state to

the state FX

14

* Examples and source codes from the ModelJUnit distribution (under
subdirectory “examples2.0”)- Copyright (C) 2007 Mark Utting

public	class	SimpleSetWithAdaptor	implements	FsmModel	
{	
		protected	Set<String>	sut_;	
		protected	boolean	s1,	s2;	
	
		protected	String	str1	=	"some	string";	
		protected	String	str2	=	"";		//	empty	string	
	
public	SimpleSetWithAdaptor()	
		{	sut_	=	new	StringSet();	}	
	
		public	Object	getState()	
		{	return	(s1	?	"T"	:	"F")	+	(s2	?	"T"	:	"F");	}	
	
		public	void	reset(boolean	tesEng)	
		{	s1	=	false;	
				s2	=	false;	
				sut_.clear();	}	
	
		@AcEon	public	void	addS1()	
		{	s1	=	true;	
				sut_.add(str1);	
				checkSUT();	}	
	

Online Testing in ModelJUnit
EFSM with Adaptor: SimpleSetWithAdaptor

Test	data	for	the	SUT	

Tests	a	StringSet	implementa2on	
(sut_)	

Concrete	opera2on	in	
SUT	for	the	abstract	
(EFSM)	opera2on	
”reset”	

Concrete	opera2on	in	
SUT	for	the	abstract	
(EFSM)	opera2on	
”addS1”	
Check	SUT	in	right	
state	

15

Online Testing in ModelJUnit
EFSM with Adaptor: SimpleSetWithAdaptor

* Examples and source codes from the ModelJUnit distribution (under
subdirectory “examples2.0”)- Copyright (C) 2007 Mark Utting

	@AcEon	public	void	addS2()	
		{	Assert.assertEquals(!s2,	sut_.add(str2));	//sut_.add(str2);	
	s2	=	true;	
				checkSUT();	}	
	
		@AcEon	public	void	removeS1()	
		{	s1	=	false;	
				sut_.remove(str1);	
				checkSUT();	}	
	
		@AcEon	public	void	removeS2()	
		{	Assert.assertEquals(s2,	sut_.remove(str2));	//sut_.remove(str2);	
				s2	=	false;	
				checkSUT();	}	
	
		protected	void	checkSUT()	
		{	int	size	=	(s1	?	1	:	0)	+	(s2	?	1	:	0);	
				Assert.assertEquals(size,	sut_.size());	
				Assert.assertEquals(s1,	sut_.contains(str1));	
				Assert.assertEquals(s2,	sut_.contains(str2));	
				Assert.assertEquals(!s1	&&	!s2,	sut_.isEmpty());	
				Assert.assertEquals(!s1	&&	s2,	sut_.equals(CollecEons.singleton(str2)));	}	
	
		public	staEc	void	main(String[]	args)	
		{	Set<String>	sut	=	new	StringSetBuggy();	//	StringSetBuggy();	
				Tester	tester	=	new	GreedyTester(new	SimpleSetWithAdaptor(sut));	
				tester.addListener(new	VerboseListener());	
				tester.addCoverageMetric(new	TransiEonCoverage());	
				tester.generate(50);	
				tester.printCoverage();	}	}	

	How	to	test	the	result	
of	sut_.add(.)	–	(In	
EFSM	state	whether	s2	is	
false	->	can	call	add(.)	in	
implementa2on)	Concrete	opera2on	in	

SUT	for	the	abstract	
(EFSM)	opera2on	
”removeS1”	

Check	SUT	in	
expected	state	

Check	size	of	model	
and	implementaion	is	
the	same	

Example	of	genera2ng	
tests	from	this	model	

If	EFSM	in	state	where	
s2=T,	then	the	SUT	
should	be	in	state	
where	str2	is	in	the	set	

16

Online Testing in ModelJUnit
Additional Remarks

� ModelJUnit,	an	iteraEve	
process:	
	
getstate()	->		
evaluate	guard	->		
execute	acEon	->		
update	internal	state	->…	

�  At	each	moment	it	is	
possible	to	relate	with	the	
SUT	and	check	its	state	
through	the	adaptor	

�  You	can	add	code	to	measure	
coverage,	traverse	the	model	
using	specific	algorithms,	etc.	

�  The	code	is	automaEcally	
added	when	using	the	”Test	
ConfiguraEon”	in	ModelJUnit	

�  In	some	applicaEons	you	
have	to	modify	the	code	too	
(not	in	the	StringSet	example)	

17

References

�  M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007
�  Sections 5.3 and 8.1

18

One Last Interactive
Exercise on EFSMs

19

EFSM for Calculator (v.1)
�  Write	an	EFSM	for	a	calculator	accepEng	(posiEve)	integers,	different	

operators	(*,	+,	-,	/),	a	reset	operaEon,	and	parenthesis		

�  Assume	numbers	are	full	integers	(not	a	string	of	digits)	

�  Assume	that	there	is	no	need	to	check	for	division	by	zero	

�  The	result	is	given	when	entering	”=”	(no	need	to	”calculate”	the	result)	

�  Aoer	pressing	”=”	the	result	should	be	given	and	the	calculator	is	reset	
�  I.e.,	it	is	not	possible	enter	an	expression	”1+2=+4”	and	expect	to	get	

7	as	result	(compuEng	1+2	first	and	adding	4	to	the	result)	

�  For	this	first	version:	Assume		that	inputs	with	only	one	operator	
between	two	operands	is	accepted	(i.e.	something	like	"1+*2"	is	not	
accepted)	

Groups 2-5 persons: 15 min
20

I

P

lparen/c++

N

nlparen/c++

n

[c > 0] rparen/c--

Op

op

R

[c = 0] =

lparen/c++

n

reset

EFSM for Calculator (v.1)

21

� Modify	the	previous	EFSM	to	allow	any	number	of	
operators	between	two	operands		

�  The	last	operator	is	the	one	being	considered,	all	the	
others	being	discarded	

Groups 2-5 persons: 5 min

EFSM for Calculator (v.2)

22

I

P

lparen/c++

N

nlparen/c++

n

[c > 0] rparen/c--

Op

op

R

[c = 0] =

lparen/c++

n

op

reset

EFSM for Calculator (v.2)

23

� Modify	the	previous	calculator	by	replacing	”full	
integers”	by	entering	digit	by	digit	

�  The	EFSM	should	handle	digits	individually	to	”build”	the	
integer	

Groups 2-5 persons: 10 min

EFSM for Calculator (v.3)

24

EFSM for Calculator (v.3)
I

P

lparen/c++

D

d/n:=dlparen/c++

d/n:=d

d/n:=n.d

Op

op

R

[c = 0] =N

[c > 0] rparen/c--lparen/c++

d/n:=d

op

reset

op [c = 0] =

[c > 0] rparen/c--

25

� Write	a	more	concrete	EFSM	expressing	more	
operaEonal	properEes	so	the	evaluaEon	of	expressions	
are	done	more	explicitly		

�  You	should	be	able	to	check	for	division	by	zero	

�  Hint:	You	might	use	a	stack	to	store	operands	and	to	store	
parEal	results	

Groups 2-5 persons: 15 min

EFSM for Calculator (v.4)

26

I

P

lparen/c++

N

n/push(n)lparen/c++

n/push(n)

[c > 0] rparen/calcOp(); c--

Op

op/calcOp();lastOp := op

R

[c = 0] =/calcOp();pop()

lparen/c++

n/push(n)

op/lastOp := op

reset

EFSM for Calculator (v.4) - Sketch
�  Operands are pushed into a stack as they are read
�  The 'current' operator is stored in a variable lastOp
�  The operation calcOp pops two elements off the stack and performs the operation in lastOp
�  Both push and calcOp need to be sensitive to the

current nesting level (which is the counter c), so this
implies we should keep a separate stack for every
nesting level, and calcOp should push its result in the
stack of the outer level (c-1) except for the N -> Op and
N -> R transitions, where the result should be pushed in
the current stack

27

About next lectures…

IMPORTANT: One last lecture on model coverage criteria…

Remaining time is to be dedicated to work on your
mini-project

28

NOTE:	A	figure	on	slides	6	has	been	removed	for	copyright	reasons	–	See	the	
references	to	where	in	the	book	you	find	it	

