Model-Based Testing

(DIT848 / DAT261)
Spring 2017

Lecture 7
Introduction to MBT

Gerardo Schneider
Department of Computer Science and Engineering
Chalmers | University of Gothenburg

Many slides based on material provided by Mark Utting

What have we seen What remains
] The rest of the lectures: MBT
® V&V: Validation &
Verification 1. Introduction (concepts,

® The V model terminology,...) — Today

® Black box testing 2. ModellUnit — today
® White box testing
o

Something on coverage >- Graph theory for MBT — Wed
next week
® (Extended) Finite State

Machines 4. Making your tests executable —

Wed next week

Guest lectures? 5. How to select your tests — Wed
- next week

Kinds of Testing

Scale of SUT ?
! Model
System, Based
| Testing
|
Integration |
|
|
|
Component:
|
|
Unit;
|
I Requirpments Code
. (BlackBox) | (White Box) -
Fur{ctional ,” Tests derived from...
Robustness |~

Performance

Usability

What is Model-Based Testing

Four main approaches known as MBT

1. Automatic generation of test input data from a domain model
® |nformation on the domain of input values
® Not known whether test passess or not

2. Automatic generation of test cases from an environmental model
Environment: expected usage of SUT, operation frequences...
® Do not specify expected output

3. Automatic generation of test scripts from abstract tests
® Abstract description of test cases (eg. UML seq. Diag.)
® Transforms abstract test cases into low-level executable script

4. Automatic generation of test cases with oracles from a behavior model
® Executable tests with expected output
® Model must describe expected behavior of SUT

MBT in context...

Different testing processes
When designing functional =k

testing, 3 key steps: 1. Manual testing process

1. Designing the test case 2. Capture/replay testing
process

2. Executing the tests and

analyzing the result 3. Script-based testing

process

3. Verifying how the tests 4
cover the requirements

. Keyword-driven
automated testing
process

Preliminaries: notation...

C 5 i

Informal Document Test Designer Manual Activity
Formal Document Manual Tester Automated System under Test

|_f A -

Report Programmer Interact with Tool Software Tool

1. Manual Testing

Requirements
+ easy & cheap to start

+ flexible testing

Test - -

Design . :
Y - expensive every execution

- no auto regression testing

- ad-hoc coverage

Test !
ost ﬁ* _____ - [Test J - No coverage measurement

Execution | Result
|

System
under

Test

2. Capture-Replay Testing

Requirements

+ flexible testing

- expensive first execution 5

+ auto regression testing Dezlegsr:: -

- fragile tests break easily w

- ad-hoc coverage . f e [

- no coverage measurement Execufi‘:’flf;

- low-level recorded tests ! -
Capture/Replay Tool

Scripts

NOTE: Mostly used to automate
testing of graphical user interface
(GUI)

3. Script-Based Testing

+/- test impl. = programming
‘),%“' """ + automatic execution
+ auto regression testing

- fragile tests break easily?

R

Test E
Implementation !

(depends on abstraction)

- ad-hoc coverage

{Testsmpts} m - N0 coverage measurement

Eest Execution Tool

4. Keyword-Driven Testing
Koo [omo ks Gourso

Enter Alain London, Computability ST
Student Turingo UK
Enter Claudio Michigan, Digital Design : _—__
Student Shannoni USA ﬁr-—-
Test |
Designy

Similar to:

- data-driven

Y
- table-driven .- Keyword Test
. Framework
- action-word driven Test+, ,
Implementation

\\ [Test Scripts] @
‘(Adaptor)

/

Test Execution Tool

Source: M. Utting and B. Legear

4. Keyword-Driven Testing

+ abstract tests

+ automatic execution

+ auto regression testing

- robust tests

- ad-hoc coverage

- no coverage measurement

- manual design of test data
and oracle

Note: The “adaptor” allows translate
sequence of keywords and data into
| executable tests

Requirements

ﬁ‘ _-*| Keyword Test
Framework

Test\\ l

Implementation
\\ [Test Scripts] E
Adaptor)

y,
Elst Execution Tool

b. Model-Based Testing

1. Model the SUT and/or its environment

® \Write some abstract model / annotate with relationship between tests
and requirements

2. Generate abstract tests from the model

® Chose some test selection criteria to generate tests from the model.
Coverage and results refer to the model!

3. Concretize the abstract tests to make them executable

® Use a transformation tool to get concrete tests (on the SUT) from the
abstract tests from the model

4. Execute the tests on the SUT and assign verdicts

5. Analyze the test results (and take corrective action)
| fault in the test case might be due to a fault in the adaptor co

b. Model-Based Testing
+ abstract tests
2 | + automatic execution

2 M&D + auto regression testing
Model
; —L + auto design of tests
2) Generate Generator Model .
] sherE + systematic coverage
| + measure coverage of
o 7 model and requirements
3) Concretise 5) Analyse .
R m - modeling overhead
= est Scripts
Important: usually first
Test Execution Tool | 4) Execute abstract TeSTS _> needs 1,0
System

under
Test

get concrete tests: adaptor!

Building Models...

Reusing or building from scratch?

Reusing existing Reuse something Developing model
development model from scratch

® Some x% of reuse

® 100% reuse; not (0<x<100) ® 0% reuse
always possible:

1. Develop. model ® Eg. reuse high-level ® Maximize
usually contains class diagram and independence
too much detail some use cases; add

2. Usually doesn’t behavioral details ® Alot of effort
describe the SUT

dynamic behavior

© Not abstract enough Whatever approach: relate your mod
recise enough to the informal requirement

Benefits of MBT

1. SUT fault detection
® Increase the possibility of finding errors

2. Reduces testing cost and time
® |ess time and effort spent on writing tests and analyzing results
® (Could generate shortest test sequences

3. Improves test quality
® Possible to measure the ”quality” by considering coverage (of model)

4. Detects requirements defects
® Modeling phase exposes requirements issues

5. Traceability
Between requirements and the model
® Between informal requirements and generated test cases

uirements evolution

reflect new re

Limitations of MBT

Inherent to MBT:

1. Cannot guarantee to find all
differences between the
model and the
implementation

2. Need of skilled model
designers: abstract and
design models

3. Mostly (only?) for functional
testing

4. Some tests not easily

After you adopt MBT:

1. Outdated requirements
® Might build the wrong model

2. Inappropriate use of MBT

® Parts difficult to model; may
get the wrong model

3. Time to analyze failed tests

® |t may give complex test
sequences

4. Useless metrics

® Number-of-tests metrics not
useful (huge number!) — other
metrics needed

How to model your system?

1. Decide on a good level of abstraction
® \What to include and what not to

2. Think about the data it manages, operations it performs, subsystems,
communication...

® Maybe start from a UML class diagram?
® Be sure you simplify your class diagram (simpler for testing than for design!)

3. Decide notation
4. \Write the model

5. Ensure your model is accurate

® Validate the model (it specifies the behavior you want)

® Verify it (correctly typed and consistent)

Notations for modeling

Seven possible “paradigms” 4. Functional
1. Pre/post (state-based) Collection of mathematical functions
Snapshot of internal state of the system ® FOL, HOL, ...

+ operations .
5. Operational

® B,Z UMLOCL, VDM, ...
Collection of executable parallel processes

2. Transition-based ® (CSP, CCS, Petri nets, Pl-calculus, ...

® FSMs, statecharts, LTS, 1/0O
automata, ...

6. Statistical

Probabilistic model of the event and input

3. History-based values

Allowable traces if behavior ® Markov chains, ...
e 7. Data-flow

Choosing a hotation

For MBT, transition-based and pre/post notations are the most used

® Guidelines: Is the system data-oriented or control-oriented?

Data-oriented systems have state In control-oriented systems the set

Varlables, rich types (Sets, rE|at|0nS, Of ava”able Opera‘hons depends on

seguences,...). the state

doftzramns to access and manipulate Control-oriented systems are most

easily specified using transition-

Data-oriented systems are most based notations

easily specified using pre/post

notations ® Eg. FSMs

® Eg. B, having powerful libaries of _ -

data structures e Note 1: Possible to use transition-based
® ® notations for data-oriented systems:
S s e handle data structures too (eg. EFSMs)

course.

transition-based :C\Iote 2II In MBT the model should be
notations! ormai. o

Drinking Vending Machine (DVM)

Case STUdy Utting & Legeard book:
Requirements: sec 3.2, pp.66!

DVM case study

Use case Utting & Legeard book:
Use Case 3.1, pp.67!

—

DVM case study
High-level design

We need a high-level architecture of the DVM: how the
controller interacts with other components

UML class diagram:

DrinkShelf 3 | <<SUT>> <<enumeration>>
avail:Boolean drink Controller MESSAGE
price:Integer {ordered} display: MESSAGE ShowBalance
releage() balance:0..200 InsufficientFunds
setPrice(Integer) DrinkNotAvailable

<<events>> .
insertCoin(Integer) S8 EaneE
CoinBox returnButton()
1 1 | selectDrink(Integer)
: outOfService()
ke.ePCOifl() Mt putInService()
re) ectCoin() setPrice(Integer,Integer)
giveChange(Integer)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

DVM case study
What's next?

® Informal description, use cases, high-level design, etc.
give us an idea of what a DVM controller does

® But... it doesn’t specify all the input conditions,
alternatives, exception cases, we want to test

® Not precise enough for test generation

We need to write a model “for testing”!

DVM - Transition-based model

Group exercise

® Come up with a finite state machine (FSM)

that models the Controller component of the
DVM

® Start with a machine for the money operation
insertCoin and returnButton

® Assume you only have coins of 50 and 100

DVM - FSM model

Partial solution to FSM for the DVM money operation
(insertCoin, returnButton)

insertCoin(100) insertCoin(100) insertCoin(100)

insertCoin(50)

1nsertC01n(50) insertCoin(50) %m

returnButton insertCoin(100)
returnButton insertCoin(100)
returnButton
returnButton
returnButton

1nsertC01n(50) 1nsertC01n(50)

® You will need to come with more complex transition-based notations (UML
state machine diagrams, EFSMs, etc.) for a full solution useful for test generation

Btw, anything wrong with the proposed solution?

ransmons insertCoin(100) from state ”200”
insertCoin(100) i insertCoin(50)

DVM - FSM model

Some comments...

insertCoin(100) insertCoin(100) insertCoin(100)

insertCoin(50)
1nsertC01n(50) 1nsertC01n(50) 1nsertC01n(50) insertCoin(50) m
returnButton insertCoin(100) \\7
fet“mB““"n insertCoin(100)
returnButton
returnButton

returnButton

How to interpret the loops in states 150 and 2007

1. Nothing happens -> the content of the cash box doesn’t change

2. Wrong in state 150 -> add a transition with insertCoin(100) from 150 to 200
and interpret state 200 as “containing at least 200”

es: Underspecified what happens with the coins (change

Pre/Post models in B.. in1slide

The B abstract machine notation: formal modeling notation for specifying
software

® High-level libraries of data structures
® Code-like notation for post-conditions

Development starts from an abstract model
® High-level functional view

Werite a series of increasingly detailed designs: refinement

B supports tools for automatic generation of proof obligations to prove
correct refinement

- MBT using B: checks the model against the implementation, but via
sting (does not guarantee to find all errors)!

DVM - B model imities ™

Partial: models
money only

Invariant: doesn’t change
in the program

| |: Multiple assignments

reject: output variable
insertCoin: name operation
coin: input variable

What follows only holds
rovided the precondition

olds
D

Source: M. Utting and B. Legeard, Practical Model-Based Testing

MBT - How to do in practice?

® Next lecture on how to write an EFSM in Java
® ModellUnit

® |n practice: future lectures
® Extracting and selecting your tests from (E)FSM

MBT - Summary

MBT is the automation of black-box test design
® Test cases can be automatically generated from the model using MBT tools

The model must be precise and concise

Tests extracted are abstract; they must be transformed into executable tests
Not practical to (completely) reuse a development model for MBT
Transition-based notations: better for control-oriented systems

Pre/post notations: preferable for data-oriented systems

Possible to write partial models and refine
® Avery abstract model: few high-level tests covering few aspects of the system
® A more detail model: tests covering more

EFSM: useful for both control and data-oriented systems -

References

®* M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007

® Chapters 1-3

NOTE: Look at the references to the book in the
slides as many pictures have been removed for

copyright reasons!

