
Model-Based Testing
(DIT848 / DAT261)

Spring 2017
Lecture 4

Testing: The Bigger Picture

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

Some slides based on material by Magnus Björk and Thomas Arts
 1

The Bigger Picture

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

The techniques we
have seen so far
are mainly at this

level

2

Unit tests
�  Test	the	smallest	components	individually	

�  O4en	done	by	the	programmer	who	wrote	the	code	

�  Less	strict	requirements	of	documenta<on	
�  Large	part	of	documenta<on	replaced	by	executable	test	suites	(Cunit,	Junit	

or	similar),	which	must	therefore	be	clearly	wriCen	

�  No	less	important	than	any	other	test!	

�  In	fact,	maybe	the	most	important	test:	
�  Unit	tests	easier	to	do	than	other	tests	–	well	invested	<me	
�  Bugs	discovered	early	easier	to	fix	
�  So	spending	effort	on	unit	tests	reduces	work	later	

�  Recommended	effort:	equal	amount	of	<me	spent	wri<ng	code	and	
unit	tests	

3

Unit tests – typical flow
Programmer:	

�  writes	code	
�  runs	sta<c	verifica<on	tool	such	as	splint	(for	C)	
�  writes	and	runs	unit	test	suite	to	test	the	code	

�  Using	framework	such	as	JUnit,	CUnit	

�  complements	black	box	test	suite	with	white	box	techniques	
�  Coverage	checking	(iden<fy	missing	test	cases)	–	Gcov,	Emma	
�  Valgrind:	Monitor	memory	behaviour	of	C/C++	programs	

The	colleagues	of	the	programmer	do:	

�  Code	review	
4

Unit tests
Test Driven Development (TDD)
Programmer:	

�  writes	unit	test	cases	
�  Runs	test	suite,	makes	sure	it	fails	

�  writes	code	un<l	test	suite	does	not	fail	
�  Adds	more	test	cases	if	needed	

�  runs	sta<c	verifica<on	tool	such	as	splint	(for	C)	

�  complements	black	box	test	suite	with	white	box	techniques	
�  Coverage	checking	(iden<fy	missing	test	cases)	–	Gcov,	Emma	
�  Valgrind:	Monitor	memory	behaviour	of	C/C++	programs	

The	colleagues	of	the	programmer	do:	

�  Code	review	 5

Benefits of TDD
�  Focus	on	what	the	code	does	before	implementa<on	

�  Helpful	when	wri<ng	the	code	

�  Programmer	gets	very	quick	feedback	

�  Easier	to	maintain		
�  results	in	beCer	coverage	of	unit	test	suite	

�  Note:	TDD	”mandatory”	in	XP	
6

Integration tests
�  Test	different	combina<ons	of	components	

�  Different	strategies	for	integra<on	
�  Big	bang	
�  BoCom-up	
�  Top-Down	
�  Sandwich	

User interface

Function 1 Function 2

Lib 1 Lib 2 Lib 3

Lib 4

Thanks to Bruegge & Dutoit for material (through Magnus) 7

Integration tests:
Big Bang approach

�  A4er	unit	tests,	integrate	all	components	at	once	

�  Essen<ally	a	system	test	

�  Bad	idea!	Don’t	use	it	
�  Hard	to	locate	bugs	(have	to	search	the	whole	system)	
�  Cri<cal	and	peripheral	components	get	the	same	

aCen<on	
�  Only	possible	very	late	in	development	cycle	

8

�  Start	with	the	subsystems	in	the	lowest	layer	of	call	
hierarchy	

�  Integrate	such	components	with	components	that	
use	them	

�  Done	repeatedly	un<l	whole	system	is	integrated	

�  Special	code	needed:	Test	driver	
�  A	rou<ne	that	calls	subsystems	and	passes	test	cases	to	it	

�  Can	be	done	in	frameworks	such	as	CUnit	

Integration tests:
Bottom-up approach

9

Integration tests:
Bottom-up approach

User interface

Function 1 Function 2

Lib 1 Lib 2 Lib 3

Lib 4

Lib 4

Driver

Lib 1

Driver

Lib 4
Lib 1

Driver

Lib 4

Lib 2

Driver

Lib 4

Lib 2

Functions 1

Driver

Driver: A routine that calls
subsystems and passes
test cases to it

10

Integration tests:
Top-down approach

�  Test	top	level	components	first,	itera<vely	integrate	components	that	are	
called	by	the	components	that	are	already	included.		
Repeat	un<l	the	whole	system	is	integrated	

�  Special	code	needed:	Stub	
�  Has	the	same	interface	as	the	component	it	replaces	
�  Returns	fake	data	(probably	described	in	the	test	case)	
�  Passes	informa<on	of	the	call	to	the	test	framework	

�  XUnit	may	be	useful	

�  Pros:		
�  Test	cases	defined	in	terms	of	program	spec.	
�  Easy	to	see	behaviour	at	each	stage	(user	interface)	

�  Cons:		
�  Wri<ng	stubs	difficult	and	tedious	
�  Making	automated	test	suite	may	be	harder	(e.g.	if	GUI)	

11

User interface

Function 1 Function 2

Lib 1 Lib 2 Lib 3

Lib 4

User interface

Stub Stub

User interface

Fun 1 Stub

Stub Stub

User interface

Fun 1 Stub

Stub Lib 2

Stub
Stub: a piece of (dummy) code used to
stand in for some other programming
functionality

Integration tests:
Top-down approach

12

Sandwich approach

�  Do	both	boCom	up	and	top	down,	meet	in	the	middle	

�  Much	paralleliza<on:	
�  First	phase:	

�  Top	layer	with	stubs	
� Middle	layer	with	drivers	and	stubs	
�  BoCom	layer	with	drivers	

�  Second	phase:	
�  Top	and	middle	layer	(top	layer	replaces	drivers)	
� Middle	and	boCom	layer	(boCom	layer	replaces	stubs)	

13

Integration tests:
Sandwich approach

Driver

Function 1 Function 2

Lib 1 Lib 2 Lib 3

Lib 4

User interface

Stub Stub

Lib 1

Lib 4

Driver

Lib 2

Lib 4

Driver

Lib 3

Driver

Driver

Function 1 Function 2

Stub Stub Stub

User interface

Function 1 Function 2

Stub Stub Stub
14

Integration Tests: what to
consider when choosing approach

�  Which	parts	of	the	system	are	most	cri<cal?	
�  Choose	strategy	that	reveals	error	in	cri<cal	parts	early,	and	

includes	cri<cal	parts	in	many	tests	

�  Which	approach	means	less	work?	
�  Top	level	test	may	be	harder	to	automate	(e.g.	GUIs)	
�  How	to	minimize	work	spent	wri<ng	drivers	and	stubs	

�  Availability	of	components	
�  If	coding	done	boCom-up,	then	boCom-up	integra<on	tests	can	

be	started	earlier	
15

To make integration tests easier

� Do	thorough	unit	tests	

� Make	well	defined	interfaces	between	
modules	

16

System tests
�  Test	the	full	system	

�  Cover	full	specifica<on	
�  Test	automa<on	may	be	hard	to	achive		

�  System	tests	may	be	expensive	and	tedious	

�  Combine	black	and	white	box	tes<ng	as	before	

�  Test	both	normal	and	abnormal	uses	of	the	system	
�  Performance	tes<ng	

�  Push	system	to	its	limits	
�  The	goal	is	to	try	to	break	the	system	
�  May	be	used	to	iden<fy	boClenecks,	to	be	dealt	with	in	next	itera<on	

of	development	
17

System tests
�  Stress	tes'ng:	exceed	parameters:	number	of	requests,	…	

�  Volume	tes'ng:	large	amounts	of	data	

�  Configura'on	tes'ng:	different	combina<ons	of	HW	&	SW	

�  Compa'bility	tes'ng:	use	with	older	systems	

�  Security	tes'ng:	try	to	break	in	
�  Timing	tes'ng:	<me	responses	&	func<ons	

�  Environmental	tes'ng:	effects	of	temperature,	movement,	…	

�  Quality	tes'ng:	reliability,	maintainability,	availability	

�  Recovery	tes'ng:	erroneous	or	missing	input	

�  Human	factors	tes'ng:	test	user	interface	on	users	 18

Acceptance tests

�  Customer	mostly	responsible	for	acceptance	test	

�  Alpha	tes<ng	
�  Done	by	customer	under	supervision	of	developer	
�  Usually	done	in	controlled	environment	(developer’s	systems)	
�  Developer	can	quickly	fix	bugs	

�  Beta	tes<ng	
�  Product	used	by	customers	in	real	environment	
�  Developers	typically	not	present	
�  Difference	from	rest	of	product	life<me:	

�  O4en	only	selected	customers	
�  Customer	cannot	rely	on	so4ware	

19

Fixing bugs
�  Ac<on	depends	on	severity	of	bug	

�  Low-priority	failures	may	be	put	on	”known	bugs”	list,	included	
in	release	notes	

�  Always	do	regression	test	a4er	fixing	bugs!	
�  Bug	fixes	are	likely	to	break	something	else	

�  Bug	tracking	tools	o4en	useful	(Example:	Bugzilla)	
�  Maintains	list	of	bugs	
�  Assigns	priori<es	and	responsible	people	for	each	bug	
�  Keeps	reminding	people	about	their	high	priority	bugs	
�  Searchable	bug	index	(with	history)	

20

Regression tests
�  Must	be	done	a4er	every	change	to	source	code	

�  Regression	tests	significantly	cheaper	if	test	suite	is	
automated	

�  Some<mes	not	feasible	to	redo	all	tests.	If	so,	iden<fy	a	
subset	of	cases	that	cover	as	much	as	possible	

�  Tool:	Tinderbox	
�  Automa<cally	checks	out	commiCed	code,	compiles	it	and	runs	

test	suite	(needs	other	tool	for	that,	such	as	DejaGnu)	
�  Iden<fies	compila<on	errors	and	failing	test	cases	
�  Points	out	who’s	responsible	
�  Maintains	history	
�  O4en	runs	100%	of	the	<me	on	a	bunch	of	dedicated	machines	

21

Test in General: a test…
	Determine	whether	the	statements	are	true	or	false.	If	a	statement	is	false,	jus'fy	your	answer			

1.  There	are	two	kinds	of	tes<ng:	dynamic	and	sta<c.		

2.  If	you	get	100%	code	coverage	then	you	can	guarantee	that	your	so4ware	has	
been	thoroughly	tested	and	can	stop	tes<ng.	

3.  XUnit	is	beCer	than	JUnit	since	you	can	get	beCer	tests.	
4.  The	V	model	teaches	us	that	we	can	do	acceptance	tests	as	soon	as	we	have	the	

requirements,	even	before	we	start	developing.	

5.  Different	tes<ng	methods	and	techniques	apply	to	each	test	level	(as	presented	in	
the	V	model).	

6.  Tes<ng	and	debugging	are	the	same.	

7.  One	good	thing	about	the	sandwich	approach	for	integra<on	tes<ng	is	that	
enhances	paralleliza<on	(that	is,	developers	and	testers	can	work	in	parallel).	

8.  Performance	tes<ng	is	one	kind	of	test,	part	of	the	so-called	system	tes<ng.	

9.  The	best	way	to	do	integra<on	test	is	the	sandwich	approach.		
Groups 2-5 persons: 15 min 22

Test in General: solution…
1.  F	–	Tes<ng	is	by	defini<on	dynamic	

2.  F	–	Code	coverage	is	only	one	aspect;	there	is	no	guarantee	in	
general	to	get	100%	confidence	

3.  F	–	XUnit	is	a	family	of	test	units,	including	CUnit	

4.  F	Acceptance	test	is	only	done	a4er	there	is	something	to	test	
against	the	requirements.	Done	by	customer	

5.  T	
6.  F	–	Tes<ng:	establish	the	existence	of	defects;	debugging:	

loca<ng	&	repairing	those	errors	found	during	tes<ng	

7.  T	
8.  T	
9.  F	–	depends	on	how	the	system	is	built	 23

Next lecture

24

�  EFSM: Extended Finite State Machines

