
An Introduction
to Programming and Proving

in Agda
(incomplete draft)

Peter Dybjer

September 21, 2017

1 A first Agda module
Your first Agda-file is called BoolModule.agda. Its contents are

module BoolModule where

data Bool : Set where
true : Bool
false : Bool

not : Bool -> Bool
not true = false
not false = true

It declares a module BoolModule which contains
• the definition of the data type Bool with the two constructors true and

false

• the definition of the function not by case analysis (or pattern matching)
on the constructors for Bool.

Note the following:
• Each Agda file file.agda is a module with the same name file. It is

nevertheless compulsory to explicitly declare it by writing

module file where

• The data type Bool is an element of the type Set. We call Set a ”large”
type (since it is a type of types) and its elements ”small” types.

• We must first declare the type of the function not before writing the pat-
tern matching equations.

1

Standard Library. Agda has a standard library where many common types
and functions are defined (including booleans and negation).

1.1 Comparison to Haskell
We can write analogous definitions of Bool and not in Haskell, where Bool is
part of the standard library for Haskell. If it were a user defined data type its
definition would be

data Bool = True | False

where the Haskell convention is that constructor names begin with capital let-
ters. The definition of not in Haskell is

not True = False
not False = True

Note that we do not need to declare its type because Haskell infers it.
Haskell’s module system is also different from Agda’s, but we will not dis-

cuss this here.

2 The Agda mode of Emacs
2.1 Parsing and type-checking an Agda-file
Usually, Agda-files are written using the agda-mode of the Emacs editor. In
this mode you have access to a number of commands. First and foremost, the
command ”load” parses and type-checks your file. You execute by either typing
^C^L or by choosing it under the Agda-menu in Emacs. If successful, a coloured
version of your Agda file is then displayed.

For example, the file BoolModule.agda type-checks correctly and is displayed
as follows:

module BoolModule where

data Bool ∶ Set where
true ∶ Bool
false ∶ Bool

not ∶ Bool − > Bool
not true = false
not false = true

The keywords module, where, and data have become brown, the module name
BoolModule purple, the types Bool and Set and the defined function not blue,
and the constructors true and false green. The colon (:) and the function arrow
(->) have remained black.

2

2.2 Running an Agda-program
An Agda-program is a well-typed expression. To run an Agda-program means
to evaluate such an expression to a value (normal form). You can do this by
executing the command ^C^N (”normalize”) and then write the expression you
want to evaluate in the lower window (after Expression∶). For example, if you
write the expression

not true

the system will return

false

in the same window.
Remark. Agda’s evaluator is more general than Haskell’s, because it also

evaluates under binders. More about this later.

2.3 Unicode
We can use unicode in Agda, and for example write → instead of -> for the
function arrow. To enter this we write the latex code for the unicode symbol, e
g, \to for →. Similarly, we can write the latex code \neg if we want to use the
negation symbol ¬ for not.

2.4 Writing Agda-programs by gradual refinement of partial ex-
pressions

Type-checking is a complex matter in dependently typed programming. It is
therefore very useful to write ones programs by gradual refinement of ”partial
expressions”, that is, expressions with ”holes” denoted by ”?”. Examples of
well-typed partial expressions with respect to the module BoolModule.agda are

? : Bool
b : Bool
true : Bool
not ? : Bool
not (not ?) : Bool
not (not b) : Bool
? : Set
? -> ? : Set
Bool -> ? : Set
Bool : Set

Note that partial expressions can also contain variables, provided they have
been declared, such as b : Bool above.

We can write an Agda program by gradually refining a well-typed partial
expression into an ordinary well-typed total expression. For example, we can
write the function

3

¬¬ ∶ Bool→ Bool
¬¬ b = not (not b)

by gradually refining the right hand side of the equation. (Note that ¬¬ is a
single identifier. Consult the Agda wiki for more information.) First write

¬¬ b = ?

indicating that the right hand side is completely undefined. If we load the file
^C^L we can check that we have a well-typed partial expression and indeed ”?”
is a well-typed partial expression of type Bool. Moreover, the Agda system
replaces our ”?”-mark with a ”hole”:

¬¬ b = { }0

The idea is that you should now fill the hole by writing an expression (or partial
expression) in it.

2.4.1 Complete refinement (”give”)

If you are ready to fill the hole with the complete expression you first type it
inside the hole

¬¬ b = {not (not b)}0

and then you execute the command ^C^SPC (”give”) while keeping the cursor
inside the hole. Agda will now replace the hole by the complete expression and
type-check it.

2.4.2 Partial refinement (”refine”)

You can also partially refine the expression in the hole. For example, if you
have only decided that the top most function symbol is not, but want to leave
the argument undefined, you first write

¬¬ b = {not ?}0

and then do the command ”refine” ^C^R while keeping the cursor inside the
hole. You will get

¬¬ b = not { }1

Again, you can choose either complete or partial instantiation of the new hole.
Say that this time we choose to again partially instantiate it with the top most
function symbol not:

¬¬ b = not ({not ?}1)

After doing ”refine” you will get

4

¬¬ b = not (not { }2)

Finally you fill the hole by the variable b:

¬¬ b = not (not {b }2)

and execute either ”give” or ”refine”, to finish the definition.
In the important special case when the partial expression is a function sym-

bol followed by one or more ?-marks it suffices to write the function symbol in
the hole. For example, writing

¬¬ b = {not}0

is equivalent to writing

¬¬ b = {not ?}0

2.5 Mixfix operations
You can declare function symbols with mixfix syntax using underscores to mark
the argument positions. An example is the following definition of the condi-
tional (the special case where the return type is Bool):

if_then_else_ ∶ Bool→ Bool→ Bool→ Bool
if true then y else z = y
if false then y else z = z

Note that in the declaration line there are no spaces around the underscores,
but when applied there must be spaces around the arguments.

Infix syntax is a special case of mixfix. For example, here is a definition of
”and” for booleans:

&& ∶ Bool→ Bool→ Bool
b && true = b
b && false = false

2.6 Precedences
You can declare the precedence of an operation and also the associativity of
infix operations. For example,

infixl 50 _&&_

means that _&&_ is a left associative operation with precedence 50.

5

2.7 Generating patterns
It is common to define functions by pattern matching on the constructors of
a data type. When defining such a function by gradual refinement, Agda has
a special command ^C^C (”case split”) for generating the clauses for pattern
matching.

Let us consider the gradual refinement of the definition of && and above.
We begin by writing

&& : Bool → Bool → Bool
b && c = ?

After type-checking (loading) the definition line becomes

b && c = { }0

We now want to case split on the variable c : Bool. To do this we write c in
the hole and then write ^C^C which instructs Agda to do case analysis on c. We
get two pattern matching equations, one for each of the constructors for Bool:

b && true = { }1
b && false = { }2

We can now fill the two holes by b and false respectively.

Exercise: Define the operation not by gradual refinement and pattern match-
ing!

Exercise: Define logical or, logical implication, and logical equivalence

|| : Bool → Bool → Bool
=> : Bool → Bool → Bool
<=> : Bool → Bool → Bool

by gradual refinement and pattern matching using ^C^C, ^C^R, and ^C^SPC.

2.8 Comments
Comments are either lines which begin with ”−−” or text ... which is enclosed
by braces and dashes as follows: ”{− ... −}”:

3 Natural numbers
Most programming languages provide a type of positive and negative integers
and the basic arithmetic operations on them. For example, Java has the type
int of 32-bit signed 2-complement integers (and also the types short of 16-bit
and long of 64-bit versions). Haskell provides the type Int of fixed precision
integers and Integer of arbitrary precision integers.

6

3.1 Unary natural numbers
In Agda, neither integers nor natural numbers are primitive concepts; they have
to be defined. From the point of view of logic the most basic form of natural
numbers are the unary natural numbers, that is, the numbers generated by the
two constructors zero for the number 0 and succ for the successor function which
adds 1 to a number. In Agda:

data Nat ∶ Set where
zero ∶ Nat
succ ∶ Nat→ Nat

All natural numbers can now be generated by applying succ a finite number of
times to zero:

one = succ zero
two = succ one

etc. Note that in this case Agda lets us skip the type declarations although they
are usually compulsory.

3.2 Arithmetic operations
Similarly, the arithmetic operations are not primitive in Agda, but are defined
by the user in terms of pattern matching and recursion:

+ ∶ Nat→ Nat→ Nat
m + zero = m
m + succ n = succ (m + n)

∗ ∶ Nat→ Nat→ Nat
m ∗ zero = zero
m ∗ succ n = m + (m ∗ n)

These are example of a particularly simple and important kind of recursive def-
inition, called primitive recursion, where the recursive call defines the value of
a function f on succ n in terms of the value of f on n. One also says that such a
definition is by induction on n: there is a base case for zero and a step case for
succ n. Functions defined by primitive recursion always terminate.

We can declare both + and ∗ to be left associative infix operations such that
∗ binds harder than +:

infixl 60 _+_
infixl 70 _*_

Thus x + y + z parses as (x + y) + z in the definition below:

7

f ∶ Nat→ Nat→ Nat→ Nat
f x y z = x + y + z

3.3 Decimal notation and machine arithmetic
It is inconvenient to write unary natural numbers and inefficient to compute
the arithmetic operations using their primitive recursive definitions as simpli-
fication rules. Therefore, Agda has a ”pragma”

{−# BUILTIN NATURAL Nat #−}

which tells Agda that the type Nat can be compiled as the built-in machine
integers. Moreover, it tells Agda that decimal notation can be used instead of
unary, so that you for example can write 1 for succzero.

Moreover, if you write

{−# BUILTIN NATPLUS _+_ #−}
{−# BUILTIN NATTIMES _∗_ #−}

the Agda compiler (see Agda wiki) will use binary machine arithmetic for com-
puting + and *.

There are many other built in types: integers, floats, strings, and characters.
See the Agda wiki for more information.

Exercise: Define cut-off subtraction:

- : Nat → Nat → Nat

This is defined like ordinary subtraction on integers when the result is non-
negative, but returns zero when ordinary subtraction would have returned a
negative integer.

Exercise: Define the less than function:

< : Nat → Nat → Bool

Remark. We might want to make a special module for natural numbers called
NatModule. If we want to access definitions from BoolModule we need to ex-
plicitly import and open it:

module NatModule where

open import BoolModule

See the AgdaWiki for more information.
Exercise: Define a version of the conditional which returns natural numbers

(rather than booleans as in section 1):

ifn_then_else_ : Bool → Nat → Nat → Nat

8

Exercise. Define the power function

power : Nat → Nat → Nat

Exercise. Define the factorial function

factorial : Nat → Nat

Compute the result of factorial for some arguments by normalizing with ^C^N.
How large factorials can Agda compute?

Exercise. Define the Ackerman function. (See wikipedia.)
Exercise. Define a data type of binary numbers in Agda and then define

addition of binary numbers. Note that there are several issues: should you
avoid leading zeros, for example? Can you define translation maps back and
forth to the unary numbers? Note that if you do not allow leading zeros, it may
be easier to translate back and forth to strictly positive unary numbers.

Exercise. How would you define integers as a data type in Agda? How
would you define addition of integers? Subtraction?

3.4 Termination checking
In Agda you are only allowed to define total functions, that is, functions which
terminate and return a value when applied to an arbitrary well-typed argu-
ment. For example, division is a partial function on natural numbers, since the
result of dividing by 0 is undefined, so it should not be accepted.

Agda has a termination checker that will check that your functions termi-
nate. All the functions defined so far are defined by primitive recursion and
are easily recognized as terminating by Agda. On the other hand, if you define
division by repeated subtraction as follows

÷ : Nat → Nat → Nat
m ÷ n = ifn m < n then zero else succ ((m - n) ÷ n)

then Agda will report that the termination checking failed:

Termination checking failed for the following functions:
÷

Problematic calls:
(m - n) ÷ n

The termination checker analyses the recursive calls of a function and tries to
establish that these calls are on ”smaller” arguments. In the case of the division
it checks whether the arguments in the recursive call (m - n) ÷ n are smaller
than the respective arguments of the calling instance m ÷ n. It notices that it is
not clear that (m - n) is strictly smaller than m. Indeed, if n is zero the division
function will call itself with the same arguments and fail to terminate.

So how do we define division in Agda? We have to turn it into a total func-
tion. This can be done in several ways, either by returning an error value when

9

dividing by 0, or by making sure that the input domain of the denominator
does not include zero. We will show later how this can be done.

Assume now for simplicity that we use zero as the error value.

÷ : Nat → Nat → Nat
m ÷ n = ifn (iszero n || m < n) then zero else succ ((m - n) ÷ n)

Now, we have defined division as a total function. However, Agda’s termi-
nation checker will still return the same error message. The reason is that it
fails to recognize that we have ruled out the problematic case when n is zero in
the recursive call. This requires more advanced reasoing than the termination
checker is capable of. This example shows that the termination checker is not
complete. There are terminating functions which are not accepted by it.

Exercise. It is of course unsatisfactory to use zero as an error value. Define
a modified type of natural numbers with a special error value error. Then try
to redefine division by repeated subtraction so that

m ÷ 0 = error

and note that the termination checker will not accept this definition.
It is possible to turn off the termination checker by including either of the

following two pragmas in your file

{-# TERMINATING #-}
{-# NON-TERMINATING #-}

In the first case you declare a function to be terminating although it has not been
checked by the termination checker. In the second case you allow the possibility
of writing non-terminating functions, and in this way Agda can be used for
writing general partial recursive functions in much the same way as Haskell.
However, note that using non-terminating functions in types may break type-
checking.

Note. In Martin-Löf type theory, the logical language which Agda grew
out of, the only recursion which is allowed is primitive recursion (and analo-
gous notions of structural recursion on other data types than natural numbers).
Agda’s termination checker has relaxed this condition and accepts a more gen-
eral class of terminating recursive definitions. For example, it accepts the fol-
lowing definition of equality of natural numbers

== ∶ Nat→ Nat→ Bool
zero == zero = true
zero == succ n = false
succ m == zero = false
succ m == succ n = m == n

This is not a primitive recursive definition, since it does induction in both ar-
guments simultaneously. Primitive recursion requires that induction is in one
argument at a time.

10

Exercise. Define equality of natural numbers using only official primitive
recursion. (See wikipedia for a precise definition.) Hint. Use cut-off subtrac-
tion.

3.5 Records
Discuss simply typed version of records: including examples of counters and
finite sets. Polymorphism and axioms will be discussed later.

4 Dependent Types
So far all our Agda-programs have been written in the simply typed subset of
Agda. We are now ready to move to the key feature: dependent types. An
example is the type Vect A n of vectors of length (dimension) n where the ele-
ments have type A. We say that the type Vect A n called a dependent type, since
Vect A n depends on A : Set and n : Nat. We have the following typing:

Vect : Set → Nat → Set

We will however, postpone the definition of Vect for a bit, and instead show
how to use of dependent types for defining polymorphic types and functions.

4.1 The logical framework
The core of Agda is a typed lambda calculus with dependent types, often called
the ”Logical Framework” (”LF”). We already saw that it has a type Set and you
can declare data types to be members of this type. So Set is a type of data types.
(The types in Set are also called small types). We do not have

Set : Set

because this would result in a logical paradox, similar to Russell’s paradox for
naive set theory.

If A : Set, then A is a type, that is, it can stand to the right of the ”:”-sign.
Moreover, we do not only have ordinary function types A → B, but also

”dependent function types” (x : A) → B, where the type B may depend on the
variable x : A. For example, the function which maps a number n : Nat to the
vector [0, ..., n-1] has type (n : Nat) → Vect Nat n.

4.2 Polymorphism
We shall now see how dependent function types can be used to express the
types of polymorphic functions. A very simple example is the identity function
(or ”combinator”):

id ∶ (X ∶ Set) → X → X

11

id X x = x

Informally, this says ”for any type X, we have an identity function id X : X
→ X”. Note that this is different from polymorphism in Haskell where we have
a function id of type X → X, for a type variable X, and that X does not appear
as an argument of id. Note also that the type expression

(X : Set) → X → X

is well-formed and that X → X is a type which ”depends” on the variable X :
Set.

Remark: we can use λ-notation in Agda and instead write

id′ ∶ (X ∶ Set) → X → X
id′ = X x → x

4.3 Implicit arguments
It would be tedious to always have to write out all type-variable arguments. For
this purpose Agda has facility for declaring arguments to be ”implicit” by using
the ”implicit dependent function type” {x : A} → B. The typing rule is that if
b : {x : A} → B, and a : A, then b : B[x := a], that is, that b is a term of
type B where the term a has been substituted for the variable x. In this way we
can recover Haskell’s notation for polymorphism, e g, the type of the identity
function with implicit polymorphism is

id−implicit ∶ {X ∶ Set} → X → X
id−implicit x = x

Exercise: write id−implicit using λ-notation!
We can define many polymorphic combinators with implicit arguments. For

example, the infix composition combinator can be defined by

∘ ∶ {X Y Z ∶ Set} → (Y → Z) → (X → Y) → X → Z
(g ∘ f) x = g (f x)

Exercise: Define the K and S-combinators! (See wikipedia if you don’t know
their definitions.)

In combinatory logic one shows that the two combinators K and S suffice
for defining all other combinators. In particular one can show that the identity
combinator can be defined as I = S K K. Check what happens if you let Agda
normalize S K K! Explain.

12

4.4 Polymorphic lists
Data types can be polymorphic too. For example, in Haskell we have the type
[a] of lists where the elements belong to the type a for an arbitrary type a. In
Agda we declare the polymorphic data type of lists as follows:

data List (A ∶ Set) ∶ Set where
[] ∶ List A
∶∶ ∶ A→ List A→ List A

This declaration states that the type of List is Set → Set, that is, if A : Set
then List A : Set. Moreover, the types of the constructors have an implicit
argument, which is not written out in the declaration above. Their proper types
are:

[] : {A : Set} → List A
:: : {A : Set} → A → List A → List A

Let us now define some list functions, for example map is defined as follows:

map ∶ {A B ∶ Set} → (A→ B) → List A→ List B
map f [] = []
map f (a ∶∶ as) = f a ∶∶ map f as

What about head? Let us try to define

head : {A : Set} → List A → A
head [] = ?
head (a :: as) = a

In Haskell we can simply define head as a partial function, which is not defined
for []. This is not possible in Agda, where all functions are total. The way out
would be to define head [] as an explicit error element, for example ”Nothing”
in Haskell’s Maybe type defined by

data Maybe a = Just a | Nothing

Exercise: Define the Maybe type in Agda and the function

head : {A : Set} → List A → Maybe A

Note that we can make tail total without using Maybe by conventionally defin-
ing tail [] = [].

4.5 Cartesian products
4.5.1 Cartesian product as a polymorphic data type

The Cartesian product of two types (the type of pairs, cf Pierce, figure 11-5 p
126) is a polymorphic data type with one constructor:

13

data _×_ (A B ∶ Set) ∶ Set where
<_, _> ∶ A→ B → A × B

Exercise: write out the full types of _×_ and <_,_>. Hint: look at the definition
of the data type List. Pierce uses {_,_}.

We can now define the first and the second projection:

fst ∶ {A B ∶ Set} → A × B → A
fst < a , b > = a

snd ∶ {A B ∶ Set} → A × B → B
snd < a , b > = b

4.5.2 Cartesian product as polymorphic record

Alternatively, we can define the cartesian product as a polymorphic record as
follows:

record _×′_ (A B ∶ Set) ∶ Set where
field

l1 ∶ A
l2 ∶ B

This is like A × B but with labels l1 and l2 for the two components.
Then we can write _×'_.l1 _×'_.l2 for the projections (cf fst and snd):

fst′ ∶ {A B ∶ Set} − > A ×′ B − > A
fst′ = _×′_.l1

snd′ ∶ {A B ∶ Set} − > A ×′ B − > B
snd′ = _×′_.l2

We can now define pairing of elements as a record

<_, _>′ ∶ {A B ∶ Set} − > A − > B − > A ×′ B
< a , b >′ = record { l2 = b
; l1 = a
}

Since we often want to have access to the constructor of a record, Agda al-
lows us to declare it directly in the record definition

record _×″_ (A B ∶ Set) ∶ Set where
constructor <_, _>″

14

field
l1 ∶ A
l2 ∶ B

Remark. Pierce uses t.1 for fst t, the ”first projection” and t.2 for snd t, the
”second projection”.

Pierce’s evaluation rules are for ”strict” pairs, evaluating the first component
to a value, then the second component. When projections are computed we first
compute both components of the pair, then throw one away

In general we can define types of n-tuples for arbitrary n (pairs, triples,
quadruples, ...). The type of 0-tuples is the unit type defined as follows:

data Unit ∶ Set where
<> ∶ Unit

Alternatively it can be defined as a record with no fields:

record Unit′ ∶ Set where
constructor <>′

Remark. An important difference between products defined as data types
and products defined as record, is that the latter enjoys the property of ”surjec-
tive pairing”. For the unit type this states that x = <> for any x : Unit'. This
is not the case for the data type x : Unit. For binary products it states that
x = < fst' x, snd' x > for any x : A ×' B.

5 Inductive families
We are now ready to define the vectors as a dependent data type (inductive
family):

data Vect (A ∶ Set) ∶ Nat→ Set where
[] ∶ Vect A zero
∶∶ ∶ {n ∶ Nat} → A→ Vect A n → Vect A (succ n)

Note that this difference is similar to the definition of List above. The differ-
ence is that Vect A : Nat → Set is a family of types for each A, whereas List A
is one type. Moreover, the constructors of Vect contain size information: [] is
a vector of dimension zero, whereas the dimension of the vector a :: as is one
greater than the dimension of as.

Given the size information we can now make head a total function by ex-
pressing that its argument of must be a vector of length strictly greater than
zero:

head ∶ {A ∶ Set} → {n ∶ Nat} → Vect A (succ n) → A

15

head (a ∶∶ as) = a

6 Proving in Agda
We have now come to the point where we that Agda is not only a program-
ming language but also a proof assistant, that is, a system where you can write
machine-checked proofs. In traditional logic, a proof is a sequence of formulas,
such that each formula is either an axiom or follows from a number of previous
formulas by a rule of inference. (In computer science it’s actually more natu-
ral to see such a proof of a theorem as a tree, where the root is the theorem, the
leaves are the axioms, and the inner nodes follow from their parents by a rule of
inference.) In Agda and other systems based on the Curry-Howard correspon-
dence there is another notion of proof, where proofs are programs, formulas
are types, and a proof is a correct proof of a certain theorem provided the cor-
responding program has the type of the corresponding formula. Proofs in this
sense are often called proof objects, to emphasize the difference with proofs in
the usual sense of logic.

This might all be somewhat mysterious to begin with, so let us start with
something simple and again use our Booleans and try to prove some properties
about Boolean operations. We shall prove that the type Bool with the operations
not, _&&_ and || form a Boolean algebra. (See wikipedia.)

6.1 The identity type
Say that we want to prove the following law of Boolean algebra, the law of dou-
ble negation:

not (not b) = b

for an arbitrary b : Bool. We can do this by proving the law for b = true and b
= false:

not (not true) = true
not (not false) = false

Both those equations follow by equational reasoning from the two defining
equations for not:

not (not true) = not false = true
not (not false) = not true = false

How can we express this reasoning in Agda? Since we shall identify formulas
(propositions) and types, the first question is: what type corresponds to the
proposition not (not b) = b? To this end we use the identity type Id A a a',
which contains proofs that a, a' : A are identical. Thus the law of double
negation for Bool can be written as the Agda-type:

16

(b : Bool) → Id Bool (not (not b)) b

that is, we need to write a function which for any b : Bool returns an element
(proof object) of Id Bool (not (not b)) b. The idea behind the identity type
is that there is only one way to construct a proof of an identity: a and a’ must
be identical (after simplification). Hence we define it as a data type with one
constructor:

data Id (A ∶ Set) (a ∶ A) ∶ A→ Set where
refl ∶ Id A a a

This constructor is called refl for ”reflexivity of identity”, that is, the law that
any element a : A is identical to itself.

We get a more familiar looking notation if we use the infix sign ≡ and make
the type A implicit:

data _≡_ {A ∶ Set} (a ∶ A) ∶ A→ Set where
refl ∶ a ≡ a

Note that there is an important difference between a ≡ a', which is a type,
and a = a' which is not - it’s a relation between terms. The latter expresses
that a and a’ are equal by definition (definitionally equal).

We can now for example prove that 1 + 1 is equal to 2:

oneplusoneistwo ∶ 1 + 1 ≡ 2
oneplusoneistwo = refl

Agda accepts that refl : 1+1 ≡ 2 because it first simplifies (normalizes) 1 + 1
(using the defining equations for +) and returns 2. Hence it looks at the type of
refl and realizes that we need to instantiate A by Nat and a by 2.

When we case-split (C-c C-c) a proof c : I A a a’, Agda replaces c by the only
possible constructor refl, and unifies a and a’.

Let’s return to the proof of the law of double negation.

doublenegation ∶ (b ∶ Bool) → not (not b) ≡ b
doublenegation true = refl
doublenegation false = refl

Note that the types of the right hand sides of two respective equations are

not (not true) ≡ true
not (not false) ≡ false

After simplification (normalization) they become

true ≡ true
false ≡ false

17

and hence they are instances of the type of refl.
Since doublenegation always returns refl it is tempting to try to skip the

case analysis and simply write

doublenegation b = refl

However, this does not work (try it!) since refl does not have the type not (not b) ≡
b. We cannot simplify not (not b) when b is a variable.

Exercise. Prove some other laws of Boolean algebra. (See wikipedia for the
definition.)

6.2 Pattern matching on the proof of an identity
We can also prove that propositional identity is a symmetric relation:

sym ∶ {A ∶ Set} → (a a′ ∶ A) → a ≡ a′ → a′ ≡ a
sym a .a refl = refl

Here the proof is a bit more sophisticated, because now we pattern match on a
proof object for identity. As usual we begin with putting a ? on the right hand
side:

sym a a' p = ?

Now we pattern match on p. The only constructor for ≡ is refl and Agda tries
to unify its type with the type of the goal. This forces a and a' to be identical
(definitionally). We get

sym a .a refl = { }0

This is because when we pattern match on the proof that a ≡ a' we force them
to be equal. The dot in front of the second a indicates that it is forced to be a by
the unification. The type of the hole is now a≡ a so we can fill it withrefl.

Exercise: prove transitivity by doing pattern matching in both arguments:

trans ∶ {A ∶ Set} → {a1 a2 a3 ∶ A} → a1 ≡ a2 → a2 ≡ a3 → a1 ≡ a3
trans refl refl = refl

We can also prove the general rule of identity elimination, the rule that states
that we can substitute identical elements for each other. If a property is true for
a�, then it’s also true for any a� equal to a�

subst ∶ {A ∶ Set} → {P ∶ A→ Set} → {a1 a2 ∶ A} → a1 ≡ a2 → P a2 → P a1
subst refl q = q

A special case of this is that functions map equal inputs to equal outputs

cong ∶ {A B ∶ Set} → {a1 a2 ∶ A} → (f ∶ A→ B) → a1 ≡ a2 → f a1 ≡ f a2

18

cong f refl = refl

Exercise: prove symmetry and transitivity using subst but without using
pattern matching! Similarly, construct cong without pattern matching but using
subst.

7 Proof by induction
We shall now show how to prove a property (associativity of addition) of nat-
ural numbers by induction. We first show how to write the proof by pattern
matching:

associativity−plus ∶ (m n p ∶ Nat) → ((m + n) + p) ≡ (m + (n + p))
associativity−plus m n zero = refl
associativity−plus m n (succ p) = cong succ (associativity−plus m n p)

Using propositions as types we can prove the general principle of mathe-
matical induction:

natind ∶ {P ∶ Nat→ Set}
→ P zero
→ ((m ∶ Nat) → P m → P (succ m))
→ (n ∶ Nat) → P n

natind base step zero = base
natind base step (succ n) = step n (natind base step n)

We can use this principle to prove associativity of addition without pattern
matching:

associativity−plus−ind ∶ (m n p ∶ Nat) → (m + n) + p ≡ m + (n + p)
associativity−plus−ind m n p
= natind { p → ((m + n) + p) ≡ (m + (n + p))}

refl
((p r → cong succ r))
p

Note that the two proofs are essentially the same - they are just two different
ways of expressing the same idea. Pattern matching provides ”syntactic sugar”
for definitions by primitive recursion, but it also opens the possibility for more
general recursion schemes than primitive recursion.

Exercise. Prove that

postulate 0−neutral−right ∶ (m ∶ Nat) → m + 0 ≡ m
postulate 0−neutral−left ∶ (n ∶ Nat) → 0 + n ≡ n
postulate succ−+−right ∶ (m n ∶ Nat) → m + succ n ≡ succ (m + n)

19

postulate succ−+−left ∶ (m n ∶ Nat) → succ m + n ≡ succ (m + n)

Exercise. Prove commutativity of addition:

postulate commutativity−plus ∶ (m n ∶ Nat) → m + n ≡ n + m

8 Propositional logic
We shall now show the correspondence between propositions and sets for propo-
sitional logic. This correspondence was discovered by Curry, who noticed that
there is a correspondence between some basic combinators in the lambda cal-
culus and some axioms for implication.

For example, the type of the identity combinator

I ∶ {A ∶ Set} → A→ A
I x = x

corresponds to the axiom A ⊃ A, where ⊃ is implication. The type of the com-
position combinator

B ∶ {A B C ∶ Set} → (B → C) → (A→ B) → A→ C
B g f x = g (f x)

corresponds to the axiom (B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C . Similarly the type of the
constant combinator

K ∶ {A B ∶ Set} → A→ B → A
K x y = x

corresponds to the axiom A ⊃ B ⊃ A. And finally, the type of

S ∶ {A B C ∶ Set} → (A→ B → C) → (A→ B) → A→ C
S g f x = g x (f x)

corresponds to the axiom (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C .
Finally modus ponens (the rule that says that from A ⊃ B and A deduce B)

corresponds to the typing rule for application (from f : A ⊃ B and a : A deduce
f a : B).

The intuitive idea is that a (constructive) proof f of an implication A ⊃ B is
a function which maps proofs of A to proofs of B . In constructive mathematics
functions are computable, that is, they are ”programs”.

Furthermore, conjunction corresponds to Cartesian product. The type of
the constructor corresponds to the ”introduction rule” for conjunction:

20

data _&_ (A B ∶ Set) ∶ Set where
<_, _> ∶ A→ B → A & B

Moreover, the projections correspond to ”elimination rules”

fst−& ∶ {A B ∶ Set} → A & B → A
fst−& < x , y > = x

snd−& ∶ {A B ∶ Set} → A & B → B
snd−& < x , y > = y

Similarly disjoint union (sum) corresponds to disjunction and the types of
the constructors correspond to introduction rules for disjunction:

data _∨_ (A B ∶ Set) ∶ Set where
inl ∶ A→ A ∨ B
inr ∶ B → A ∨ B

Moreover, definition by cases corresponds to proof by cases (the disjunction
elimination rule):

case ∶ {A B C ∶ Set} → (A→ C) → (B → C) → A ∨ B → C
case f g (inl x) = f x
case f g (inr y) = g y

Let us now construct a simple proof, the proof of commutativity of conjunc-
tion:

comm−∨ ∶ (A B ∶ Set) → A ∨ B → B ∨ A
comm−∨ A B (inl a) = inr a
comm−∨ A B (inr b) = inl b

Exercise: Prove commutativity of conjunction!
Finally, we point out that the the unit set corresponds to a trivially true

proposition with a single proof object:

data ⊤ ∶ Set where
<> ∶ ⊤

Similarly, the empty set is defined as the set with no constructors and corre-
sponds to a trivially false proposition. We write

data ⊥ ∶ Set where

21

The elimination rule for ⊥ corresponds to the rule of proof by no case; ⊥
implies any proposition. If we pattern match on the constructors for ⊥ we get
no cases. However, rather than simply not writing out any cases at all, Agda
writes one line

nocase ∶ {C ∶ Set} → ⊥→ C
nocase ()

where () indicates the argument which cannot be instantiated in a type-correct
way.

Note that there is a general pattern for all the logical connectives, except ⊃,
stating that the types of the constructors correspond to the introduction rules.
If we want to have this pattern for ⊃ as well, we can alternatively define it as
follows:

data _⊃_ (A B ∶ Set) ∶ Set where
⊃−intro ∶ (A→ B) → A ⊃ B

Modus ponens is now defined as follows

mp ∶ {A B ∶ Set} → A ⊃ B → A→ B
mp (⊃−intro g) a = g a

Negation is defined as implying the absurd:

¬ ∶ Set→ Set
¬ A = A→⊥

With this definition neither the law of double negation

(A : Set) → ¬ (¬ A) → A

nor the law of excluded middle

(A: Set) → A� ¬ A

are valid.
However, the inverse of double negation is valid:

inverse−dn ∶ (A ∶ Set) → A→¬ (¬ A)
inverse−dn A a = f → f a

This is called the BHK (Brouwer-Heyting-Kolmogorov) interpretation of logic
or the Curry-Howard correspondence between propositions as types (sets). Howard
showed how to generalize this to predicate logic by introducing dependent
types.

Exercise: Prove the following three laws.
(a) the law of triple negation:

22

(A: Set) → ¬(¬(¬A)) → ¬A

(b) excluded middle implies double negation:

(A : Set) → (A ∨ ¬A) → ¬(¬A) → A

(c) double negation implies excluded middle:

((X : Set) → ¬(¬X) → X) → (A : Set) → (A ∨ ¬A)

Note the strengthening of the assumption in (c): to prove excluded middle for
A it does not suffice to know double negation for A itself, but you must know it
for any proposition X .

9 Predicate logic
Howard introduced dependent types and could thus extend Curry’s correspon-
dence between propositions as types (sets) to the quantifiers.

Since a proposition corresponds to a set, a predicate P over a set A, corre-
sponds to a ”propositional function” P ∶ A → Set. The universally quantified
proposition ∀x ∶ A.Px corresponds to the set (x ∶ A) → Px . Intuitively, a proof
of ∀x ∶ A.Px is a function which maps an arbitrary element a ∶ A to a proof of
Pa .

To emphasize the correspondence between dependent function spaces and
universally quantified propositions, Agda allows the notation ∀(x ∶ A) → Px
as an alternative to (x ∶ A) → Px .

You can think of universal quantification (over an infinite set) as infinite con-
junction and existential quantification as infinite disjunction.

A proof of an existentially quantified proposition ∃x ∶ A.Px is a pair <a , p>
consisting of an element a : A and a proof p : Pa . We can define it as a data
type with one constructor:

data ∃ (A ∶ Set) (P ∶ A→ Set) ∶ Set where
<_, _> ∶ (a ∶ A) → P a → ∃ A P

The first projection gives access to the ”witness” a : A.

witness ∶ {A ∶ Set} {P ∶ A→ Set} → ∃ A P → A
witness < a , p > = a

The second projection gives access to the proof that P holds for the witness a
(that is, p : Pa).

proof ∶ {A ∶ Set} → {P ∶ A→ Set} → (c ∶ ∃ A P) → P (witness c)
proof < a , p > = p

The rule of existence elimination is as follows:

23

∃−elim ∶ {A ∶ Set} → {P ∶ A→ Set} → {Q ∶ Set} → ((a ∶ A) → P a → Q) → ∃ A P → Q
∃−elim f < a , p > = f a p

Exercise: Define uncurrying!

uncurry : A B C : Set → (A → B → C) → A × B → C

and note the similarity with ∃-elim!
Just as there was an alternative version of implication, there is a universal

quantifier which is defined as a datatype with a single constructor:

data ∀‘ (A ∶ Set) (P ∶ A→ Set) ∶ Set where
∀′−intro ∶ ((x ∶ A) → P x) → ∀‘ A P

Note that this gives variable free-notation ∀‘ AP= ∀‘ A(λ x→ Px) for ∀ x : A.
Px .

We can also define the rule of universal elimination:

∀′−elim ∶ {A ∶ Set} {P ∶ A→ Set} → ∀‘ A P → (a ∶ A) → P a
∀′−elim (∀′−intro f) a = f a

10 Arithmetic
10.1 Peano’s axioms
The induction axiom is one of Peano’s axioms for arithmetic (see wikipedia).
Another is the following:

peano−4 ∶ (n ∶ Nat) → zero ≡ succ n →⊥
peano−4 n ()

We can in fact prove all Peano’s axioms (see wikipedia) from our definition of
Nat. Do this as an exercise!

24

