Logic in Computer Science

For a given language F, P, a first-order theory is a set T of sentences (closed formulae) in this given
language. The elements of T are also called azioms of T.
A model of T" is a model M of the given language such that M = v for all sentences 9 in 7'

T F ¢ means that we can find 91, ...,%, in T such that ¢1,...,¥, F ¢.
T |= ¢ means that M = ¢ for all models M of T.

The generalized form of soundness is that T F ¢ implies T = ¢ and completness is that T = ¢
implies T'F .

If T is a finite set 41, ..., 1, this follows from the usual statement of soundness (F § implies = 0)
and completness (= ¢ implies - §). Indeed, in this case, we have T+ ¢ iff = (¢4 A+ Ah,) — ¢ and

TEeif @A Ada) = @

Theory of equivalence relations

The language is P = {E}, binary relation, and F = (). The axioms are
Vz. E(z, x) Ve y z. (E(x,z) AN E(y,2)) = E(z,y)
We can then show T F Vz y.E(x,y) — E(y,z) and T FVz y z. (E(z,y) A E(y,2)) — E(x, 2).

Theory about orders

The theory of strict order. The language is P = { R}, binary relation, and F = ). The axioms are
Va.—R(x, ) Vo y z. (R(xz,y) A R(y, z)) = R(x, z)
We can add equality and get the theory Tj;, of linear orders
Vo y. (x #y) — (R(z,y) V R(y, z))
Models are given by the usual order on N, Q,R. The model of rationals (Q, <) also satisfies
Y1 =Va.Jy. R(z,y) e =Vz.Jy. R(y,x) Y3 =Vo y. R(z,y) = Jz. R(z,2) A R(z,y)

It can be shown that we have (Q, <) = ¢ iff (R, <) = ¢ iff Tjin, 91, 2, ¥3 - ¢ and furthermore, there
is an algorithm to decide whether (Q, <) = ¢ holds or not.
The theory of preorder has for axioms

Ve.R(z, x) Vo y z. (R(z,y) A R(y, 2)) = R(x, z)
and for the theory of poset is this theory together with the antisymmetry
Vo y. (R(z,y) A R(y, @) »x =y
A poset is linear if it also satisfies the axiom
Vo y. R(z,y) V R(y, x)

(Q, <) and (R, <) are two linear posets that are not isomorphic but they satisfy the same first-order
formula. Furthermore we can decide whether (Q, <) - ¢ holds or not.



Theory about arithmetic

The language is F = {zero,S} and P = {), but we have equality.
The first theory Tj is

Va.zero # S(x) Vo y.S(z) =S(y) »z=y

A model of this theory is a set A with a constant ¢ € A and a function f € A — A such that f is
injective and «a is not in the image of f.

A particular model N is given by the set of natural numbers and 0 € N and the successor function s
on N.

The formulae 6; = Va.x # S(x), 62 = Va.x # S(S(z)),... are not provable in Ty but are valid in
the model (N,0,s). The formula ¢ = Vaz.z = 0V Jy.(x = S(y)) is not provable in Ty, d1,d2,... but is
also valid in the model (N, 0,s). We can look at the possible shape of the models of Tp, 01, d2,... Such a
model is a disjoint union of copies of N and Z and it there are several copies of N the formula 1 will not
be satisfied.

It can be shown that we have (N,0,s) | ¢ iff Ty, d1,92,...,% F ¢ and furthermore, there is an
algorithm to decide (N,0,s) = ¢. The models of Ty, d1,d2,...,% consist of one copy of N and zero or
several copies of Z

Presburger arithmetic
We add the binary function symbol (+) and add to Tj the axioms
Vo. x +zero =z Ve y. x4+ S(y) = S(x + y)

and the induction schema

YY1 .o Ym- @Y1y - oy Ym, 2er0) AVZ.(@(Y1y - o s Ym, ) = @Y1, -« s Ym, 3(2))) = Vz.0(y1, - -+, Y, 2)
The resulting theory PrA is called Presburger arithmetic. It can be shown that (N,0,s,+) | ¢ iff
PrAtF ¢ and there is an algorithm to decide (N, 0,s,+) |= ¢.

Peano arithmetic

We add the binary function symbol (-) and add to PrA the axioms for multiplication
V. x - zero = zero Vey. x-S(y)=z-y+2a

with the induction schema, where the formula ¢(y1, . .., Ym, ) can also used multiplication. The resulting
theory PA is called Peano arithmetic. It has been shown by Godel that PA is incomplete: there is a
formula ¢ such that (N,0,s,+,:) = ¢ but we don’t have PA F ¢.

Furthermore (N, 0,s,+, ) = ¢ is undecidable (there is no algorithm to decide N |= ¢) and there is no
effective way to enumerate all sentences ¢ valid in the model (N, 0,s, +, ).



The decision problem

The decision problem (Hilbert-Ackermann 1928) is the problem of deciding if a sentence in a given
language is provable or not.

More generally the problem is to decide if we have 1, ...,%, F ¢ or not.

There are special cases where this problem has a positive answer.

A general method is to apply the following remark: we have 11, ..., 1, F ¢ iff the following theory
U1, ..., Uy, 7 has no models. This follows from soundness and completeness.

Bernays-Schonfinkel decidable case

This is the particular case where F has only constant symbols and all formulae i, ..., 9,, @ are of the
form Vyp ... ym.0 or y; ... Ym.0 where § is quantifier-free.

In this case the following algorithm, that I illustrate on some examples, gives a way to decide whether
U1,...,¥n, —@ has a model or not. (If it has a model, it always has a finite model.) In this way, we
decide whether vy, ...,%, F ¢ holds or not.

We take the example

Ty = Ju.(P(z) A =M (x)), 3y.(M(y) A =S5(y)), Vz.(~P(2) vV 5(z2))
The first step is to eliminate the existential quantifiers by introducing constants
Ty = P(a) A —M(a), M(b) A—S(b),Vz.(—P(2) V S(z))

It should be clear that T} has a model iff 75 has a model.
The second step is to eliminate the universal quantifiers by instantiating on all constants

T3 = P(a) A =M (a), M(b) A=S(b), =P(a)V S(a), =P(b) vV S(b)
In this way we find a model with two elements P(a), =M (a), S(a), M (b), ~S(b), ~P(b).
This implies that Jz.(P(z) A =M (z)), Jy.(M(y) A =S(y)) b Tz.(P(z) A =S5(z)) is not valid.
Other examples
Ve.mR(z,z) F Vo y.(R(z,y) — —R(y, ) is not valid since we find a model of
T, =Vz.~R(z,z), 3z y. R(z,y) A R(y, )

by eliminating existentials
Ty = Vax.~R(z,x), R(a,b) A R(b,a)

and then universals

T35 = =R(a,a), =R(b,b), R(a,b) A R(b,a)

and we get a counter-model with two elements.
On the other hand Vx y.(R(z,y) — —~R(y,x) - ~R(z, z) is valid, since if we try to find a model of

T, =Vx y.(R(z,y) = - R(y,x)), Jz.R(z,x)

by eliminating existentials
Ty =Vz y(R(m,y) - —'R(y,w)), R(aa a)

and then universals
T3 = R(a,a) — —R(a,a), R(a,a)

we should have R(a,a) and —R(a,a) and we cannot find a counter-model.



Theory of cyclic order

(Not covered in the lecture, but a nice example of a theory and of the use of the Bernays-Schonfinkel
algorithm.)

A cyclic order is a way to arrange a set of objects in a circle (examples: seven days in a week, twelve
notes in the chromatic scale, ...). The language is P = {S} which is a ternary predicate symbol and
the first 3 axioms are

'l;[}l =Vax Y ZS((E,y,Z) - S(yvzvx) ¢2 =V Yy ZS(ZL’,y,Z) — —\S(x,z,y)

ZZJ?, =Vz Yy =z t(S($7y7Z) /\S(.’L’,Z,t)) - S(l‘ayat)

One can then use the Bernays-Schonfinkel algorithm to show automatically that these axioms are inde-

pendent: we don’t have 1,19 F 13 or Yo, 3 F 1)1 or 1, 11 F s
The last axiom of the theory of cyclic order uses equality

Yo =V y 2o £yAy+znz£a) - S(ay,z) v Sz, zy)

The extension of the Bernays-Schonfinkel algorithm to equality is possible by axiomatising the equality
relation. (This was first done by Ramsey, 1928, by another method.)



