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GHC RTS

• scheduler

• garbage collector

• I/O manager

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts
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Scheduler
• OS threads vs. Haskell Threads

• Thread State Object + stack (+RTS -ki)

• Tasks (one per OS thread)

• can hold a Capability

• and hand over too

• Capabilities (one per CPU)

• +RTS -N



Scheduler

• Run queue (one per Capability)

• keeps Threads (forkIO or …)

• Sparks

• spark pool (one per Capability)

• points to a thunk ⇒ can become a Thread



Sparks

• can be work-stolen by other Capabilities

• can fizzle if thunk already in WHNF

• machine busy ⇒ many fizzled sparks

• if thunks are never used, sparks will be collected 
(almost) immediately!



Heap

Everything is a closure!



Heap
• Roots

• NOT Threads (linked to by Run Queues)

• Run queue

• Spark pool

• Generations (+RTS -G)

• Nursery (+RTS -A)



Garbage collector

• Traverse from the root, copy, scrap the rest

• Oldest generations are collected least often

• Eager promotion: if pointed to by an old object

• Aging: don’t promote to quickly though



Garbage collector

• “Allocation wall”

• per-thread nurseries fitting into L2 cache

• but frequent collections will stop the world often

• running mutator and collector concurrently hurts 
cache

• Private heaps to every CPU!
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Remember

• Play with heap and nursery sizes

• Too big nursery: bad locality, less promotions

• Too small nursery: unnecessary promotions

• Too small starting heap: takes time to expand

• Distribute work evenly between sparks!



To read
• https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts

• http://www.haskell.org/ghc/docs/7.10.3
/html/users_guide/runtime-control.html

• GHC Illustrated

• Runtime Support for Multicore Haskell

• Multicore Garbage Collection with Local Heaps

• Mio: A High-Performance Multicore IO Manager for GHC

• The Implementation of Functional Programming Languages
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Questions?


