
GHC heap internals
Nikita Frolov <frolov@chalmers.se>

mailto:frolov@chalmers.se


(courtesy of Bob Ippolito,
http://bob.ippoli.to/haskell-for-erlangers-2014/)

http://bob.ippoli.to/haskell-for-erlangers-2014/
http://bob.ippoli.to/haskell-for-erlangers-2014/


GHC RTS

• scheduler

• garbage collector

• I/O manager

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts


Scheduler
• OS threads vs. Haskell Threads

• Thread State Object + stack (+RTS -ki)

• Tasks (one per OS thread)

• can hold a Capability

• and hand over too

• Capabilities (one per CPU)

• +RTS -N



Scheduler

• Run queue (one per Capability)

• keeps Threads (forkIO or …)

• Sparks

• spark pool (one per Capability)

• points to a thunk ⇒ can become a Thread



Sparks

• can be work-stolen by other Capabilities

• can fizzle if thunk already in WHNF

• machine busy ⇒ many fizzled sparks

• if thunks are never used, sparks will be collected 
(almost) immediately!



Heap

Everything is a closure!



Heap
• Roots

• NOT Threads (linked to by Run Queues)

• Run queue

• Spark pool

• Generations (+RTS -G)

• Nursery (+RTS -A)



Garbage collector

• Traverse from the root, copy, scrap the rest

• Oldest generations are collected least often

• Eager promotion: if pointed to by an old object

• Aging: don’t promote to quickly though



Garbage collector

• “Allocation wall”

• per-thread nurseries fitting into L2 cache

• but frequent collections will stop the world often

• running mutator and collector concurrently hurts 
cache

• Private heaps to every CPU!



Haskell thread

OS thread Capability

Spark pool Run queue

Task

Thunk Spark
par

holds/releases

converted

run queue empty thread preempted

GC
finished executionnot referenced

fizzled

scheduler selects



Remember

• Play with heap and nursery sizes

• Too big nursery: bad locality, less promotions

• Too small nursery: unnecessary promotions

• Too small starting heap: takes time to expand

• Distribute work evenly between sparks!



To read
• https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts

• http://www.haskell.org/ghc/docs/7.10.3
/html/users_guide/runtime-control.html

• GHC Illustrated

• Runtime Support for Multicore Haskell

• Multicore Garbage Collection with Local Heaps

• Mio: A High-Performance Multicore IO Manager for GHC

• The Implementation of Functional Programming Languages

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts
http://www.haskell.org/ghc/docs/7.10.3/html/users_guide/runtime-control.html
http://www.haskell.org/ghc/docs/7.10.3/html/users_guide/runtime-control.html
http://www.haskell.org/ghc/docs/7.10.3/html/users_guide/runtime-control.html
http://www.haskell.org/ghc/docs/7.10.3/html/users_guide/runtime-control.html
http://www.haskell.org/ghc/docs/7.10.3/html/users_guide/runtime-control.html
http://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf
http://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/
http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/


Questions?


