
MODELLING REACTIVE / EVENT-DRIVEN
SYSTEMS WITH STATE MACHINES

Anthony Anjorin

[example: Robocup]
„Penalty shootout at the AIBO Robosoccer competition“ von Alex - Flickr: DSC00203. Lizenziert unter CC BY-SA 2.0 über Wikimedia Commons -
https://commons.wikimedia.org/wiki/File:Penalty_shootout_at_the_AIBO_Robosoccer_competition.jpg#/media/
File:Penalty_shootout_at_the_AIBO_Robosoccer_competition.jpg

https://commons.wikimedia.org/wiki/File:Penalty_shootout_at_the_AIBO_Robosoccer_competition.jpg#/media/File:Penalty_shootout_at_the_AIBO_Robosoccer_competition.jpg

Reactive / Event-Driven System

Goal Keeper Defender Striker …

got the ball clear with a
long shot

pass dribble

lost the ball intercept shot chase wait for
pass

clear view of
opponents goal

… … score!

ball in opponents
half

… … chase

… … …

current role (or “state”)

ev
en

t

how can this be
implemented?

UML Statecharts

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

initial transition

state

transition

trigger

Hierarchical States

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

what is wrong with
this statechart?

Hierarchical States

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal reaction to “critical

situation” …

simple statechart, but
already quite messy

Hierarchical States

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

hierarchical state
with nested states

Striker

Chasing

Dribbling

Score

clear view of
opponent's goal

ball
possession

ball loss

ball loss

obstructed

SEMANTICS

“Missing” Transitions?

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

current state: what
happens on event “clear

view of opponent’s goal?”

“Missing” Transitions?

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

Nothing: event is
quietly discarded …

“Missing” Transitions?

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

how about for nested states?!
E.g., critical situation?

“Missing” Transitions?

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

if leaf state does not
prescribe how to handle
event, handling passes
to super state until top-
most state is reached

(event can then be
discarded)

“Hierarchical” States?

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

what do incoming and
outgoing transitions to

composite states “mean”?

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

“Hierarchical” States?

outgoing transitions from
composite are “flattened” to

all contained states

incoming
transitions lead to

initial state

Player

Goal Keeper

Defender

Midfielder

Striker

clear view of
opponent's goal

ball in
opponent's

half

other team player
nearer to goal

critical situation

resolved by letting
“lower-level”
handling win

“Hierarchical” States?

have we forgotten
something?

flattening can lead to
multiple transitions
for the same event

Multiple Events?
Striker

Chasing

Dribbling

Score

clear view of
opponent's goal

ball
possession

ball loss

ball loss

obstructed

what happens if multiple
transitions “fire”?

Multiple Events?
Striker

Chasing

Dribbling

Score

clear view of
opponent's goal

ball
possession

ball loss

ball loss

obstructed

assumed to be impossible:
Run-to-Completion (RTC)

model of execution is used

ball loss

obstructed

clear view of
opponent's goal

...

a sequential event queue is
processed, one event after

the other …

Other Language Features

• Actions on transitions: TRIGGER / ACTION
• Actions on entry or exit of states

• Usage of variables (extended states)
• Guards on transitions: TRIGGER [GUARD] / ACTION
• Simple control flow (branching on variable values)

• Orthogonal regions (and vs. or decomposition)
• Internal vs. external vs. local transitions

• Networks of communicating state machines
• …

non-trivial (perhaps even unclear)
semantics in some cases, can
easily lead to “spaghetti code”!

APPLICATIONS OF
STATE MACHINES

Modelling, Programming and Verification

The Boost Statechart Library

Rubygem state_machine

some libraries for using state
machines directly in your favourite

programming language

seamless extension of C with
(amongst other things)

verifiable state machinesverification of real-time
systems modelled as networks

of timed automata

https://rubygems.org/gems/state_machine

Language Recognition

Model-Based Testing

System Under Test (SUT)

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

Test Cases for the SUT

Are the test cases “good”?
Are they redundant?
Are they enough?
Are they up-to-date?

Model-Based Testing

Test Model

init

demo sequence

button X

move forward

lift leg

button Y

timeout

obstructed

specify expected behaviour of
system as a state machine

(Test Model)

use test model to generate tests
(and/or answer all our questions)

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

Model-Based Testing: Coverage

Test Model

init

demo sequence

button X

move forward

lift leg

button Y

timeout

obstructed

Coverage: All States, All Transitions,
All Pairs of Transitions, All Paths, …

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

Model-Based Testing: Mutation Analysis

Test Model

init

demo sequence

button X

move forward

lift leg

button Y

timeout

obstructed

1. Run the tests on the
test model, they should
of course pass

Test Model

init

demo sequence

button X

move forward

lift leg

button Y

obstructed

2. Mutate the test model,
systematically
introducing faults
(representing possible
faults in the SUT)

3. A test is “good”, if it
fails on (kills) as many
mutants as possible

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

1. Press button X
2. Press button Y
3. Assert condition S
4. Assert condition T
5. Perform action Z
6. - - -

GO FORTH AND APPLY
(STATE MACHINES)!

