
Spatial Data Structures
and Speed-Up Techniques

Ulf Assarsson
Department of Computer Science and
Engineering
Chalmers University of Technology

Exercises
l Create a function (by writing code on

paper) that tests for intersection between:
–  two spheres
–  a ray and a sphere
–  view frustum and a sphere
–  Ray and triangle (e.g. use formulas from last

lecture)

l Make sure you understand matrices:
–  Give a scaling matrix, translation matrix, rotation

matrix and simple orthogonal projection matrix

Ray/sphere test
l  Ray: r(t)=o+td
l  Sphere center: c, and radius r
l  Sphere formula: ||p-c||=r
l  Replace p by r(t), and square it:

€

t 2 + 2((o − c)⋅ d)t + (o − c)⋅ (o − c) − r2 = 0
0)()(2 =−−+⋅−+ rtt cdocdo

o

d

c
r

€

ax 2 +bx + c = 0 ⇒ x =
−b
2a

±
b
2a
$

%
&

'

(
)

2

−
c
a

Bool raySphereIntersect(vec3f o, d, c, float r, Vec3f &hitPt) {
 float b = 2.0f*((o-c).dot(d)); // dot is implemented in class Vec3f
 float c = (o-c).dot(o-c);
 if(b*b/4.0f<c) return false;
 float t = -b/(2.0f) - sqrt(b*b/4.0f-c); // intersection for smallest t
 if (t<0) t = -b/(2.0f*a) + sqrt(b*b/4.0f-c); // larger t
 if (t<0) return false; else hitPt = o+d*t; // where * is an operator for vec mul
 return true;
}

Misc
l Half Time wrapup slides are available in
“Schedule” on home page

l There is an Advanced Computer
Graphics Seminar Course in sp 3+4, 7.5p
–  One seminar every week

l  Advanced CG techniques

–  Do a project of your choice.
–  Register to the course

Spatial data structures
l  What is it?

–  Data structure that organizes geometry in 2D or 3D or
higher

–  The goal is faster processing
–  Needed for most ”speed-up techniques”

l  Faster real-time rendering
l  Faster intersection testing
l  Faster collision detection
l  Faster ray tracing and global illumination

l  Games use them extensively
l  Movie production rendering tools always use

them too
l  (You may read ”Designing a PC Game

Engine”. Link available on website)

Tomas Akenine-Mőller © 2002

How?
l Organizes geometry in some hierarchy

In 2D space Data structure

In 3D space:

What’s the point?
An example
l Assume we click on screen, and want to

find which object we clicked on

click!
1)  Test the root first
2)  Descend recursively as needed
3)  Terminate traversal when possible
In general: get O(log n) instead of O(n)

3D example

click!

Bounding Volume Hierarchy (BVH)
l  Most common bounding volumes (BVs):

–  Sphere
–  Boxes (AABB and OBB)

l  The BV does not contibute to the rendered
image -- rather, encloses an object

 l  The data structure is a k-ary tree
–  Leaves hold geometry
–  Internal nodes have at most

k children
–  Internal nodes hold BVs that

enclose all geometry in its subtree

Some facts about trees
l Height of tree, h, is longest path from root

to leaf
l A balanced tree is full except for possibly

missing leaves at level h
l Height of balanced tree with n nodes:

floor(logk(n))
l Binary tree (k=2) is the simplest

–  k=4 and k=8 is quite common for computer
graphics as well

How to create a BVH?
Example: BV=AABB
l  Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
Works similarly for other BVs

Stopping criteria for Top-Down
creation
l Need to stop recursion some time…

–  Either when BV is empty
–  Or when only one primitive (e.g. triangle) is

inside BV
–  Or when <n primitives is inside BV
–  Or when recursion level l has been reached

l Similar critera for BSP trees and octrees

Example

Killzone (2004-
PS2) used kd-
tree / AABB-
tree based
system for the
collision
detection

Kd-tree = Axis Aligned BSP tree

Binary Space Partitioning (BSP)
Trees
l Two different types:

–  Axis-aligned
–  Polygon-aligned

l  General idea:
–  Split space with a plane
–  Divide geometry into the space it belongs
–  Done recursively

l  If traversed in a certain way, we can get the
geometry sorted back-to-front or front-to-back w.r.t.
a camera position

–  Exact for polygon-aligned
–  Approximately for axis-aligned

Axis-Aligned BSP tree (1)
l Can only make a splitting plane along

x,y, or z

Minimal
 box

Split along
plane

Split along
plane

Split along
plane

•  Split space with a plane
•  Divide geometry into the

space it belongs
•  Done recursively

Axis-Aligned BSP tree (2)

l  Each internal node holds a divider plane
l  Leaves hold geometry
l  Differences compared to BVH

–  BSP tree encloses entire space and provides sorting
–  The BV hierarchy can have spatially overlapping nodes(no sort)
–  BVHs can use any desirable type of BV

A

B

C

D E

Plane 0

Plane 1a Plane 1b

Plane 2

0

1a

A B

1b

C 2

D E

Axis-aligned BSP tree
Rough sorting
l  Test the planes, recursively from root, against the point of view. For each

traversed node:
–  If node is leaf, draw the node’s geometry
–  else

l  Continue traversal on the ”hither” side with respect to the eye (to sort front to back)
l  Then, continue on the farther side.

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

2 3
4 5

l  Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting

Polygon Aligned BSP tree – Quake 2

Example – Quake 2

Polygon-aligned BSP tree
l Allows exact sorting
l Very similar to axis-aligned BSP tree

–  But the triangle planes are used as the
splitting planes

Drawing Back-to-Front {

recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}
//Where hither and
farther are with respect
to viewpoint v

Ulf Assarsson © 2006

Algorithm for BSP trees
Tree CreateBSP(PolygonList L) {

If L empty, return empty tree;
Else:

T->P = arbitrary polygon in L.
T->behindP = CreateBSP(polygons behind P)
T->frontOfP = CreateBSP(polygons in front of P)

Return T.
}

Drawing Back-to-Front:
void DrawBSP(Tree t) {

 If (t==NULL) return;
If eye front of polygon t->P:

DrawBSP(t->behindP);
Draw P;
DrawBSP(t->frontOfP);

Else:
DrawBSP(t->frontOfP);
Draw P;
DrawBSP(t->behindP);

}

class BSPtree:
Polygon P;
BSPtree behindP;
BSPtree frontOfP;

Drawing Back-to-Front {
recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}

Octrees (1)
l A bit similar to axis-aligned BSP trees
l Will explain the quadtree, which is the 2D

variant of an octree

l  In 3D, each square (or rectangle)
becomes a box, and 8 children

Example of Octree

Recursively split space
in eight parts – equaly
along x,y,z dimension
simultaneously for each
level

Example of octree

Image from Lefebvre et al.

Example of octree

Image from Lefebvre et al.

Octrees (2)
l Expensive to rebuild (BSPs are too)
l  (loose octrees, page 656, 3:rd ed.)

–  A relaxation to avoid problems

l Octrees can be used to
–  Speed up ray tracing
–  Faster picking
–  Culling techniques
–  Are not used that often in real-time contexts

l  An exception is loose octrees

Scene graphs
l  BVH is the data structure that is used most often

–  Simple to understand
–  Simple code

l  However, it stores just geometry
–  Rendering is more than geometry

l  The scene graph is an extended BVH with:
–  Lights
–  Materials
–  Transforms
–  And more
–  Typically

the logical
structure

Scene Graphs
Star

Planet 2 Planet 1

Transl
+ rot

Transl
+ rot

Transl +
Rotation

Moon A Moon B Moon C Moon D

Transl
+ rot

Transl
+ rot

Transl +
rotation

Scene Graphs

Scene Graphs

Speed-Up Techniques
l  Spatial data structures are used to speed up

rendering and different queries

l  Why more speed?
l  Graphics hardware 2x faster in 6-12 months!
l  Wait… then it will be fast enough!
l  NOT!
l  We will never be satisfied

–  Screen resolution: angular resolution in “gula fläcken”
~0.001 degree (eye sweeps scene)

l  Apple’s retina screen: 2880 x 1800

–  Realism: global illumination
–  Geometrical complexity: no upper limit!

What we’ll treat now
l Culling techniques
l  Level-of-detail rendering (LODs)

l  “To cull” means “to select from group”
–  ”Sort out”, ”remove”, ”cut away”, something

picked out and put aside as inferior.

l  In graphics context: do not process data
that will not contribute to the final image

Different culling techniques
(red objects are skipped)

view frustum detail

backface

portal occlusion

Backface Culling
l Simple technique to discard polygons

that faces away from the viewer
l Can be used for:

–  closed surface (example: sphere)
–  or whenever we know that the backfaces never

should be seen (example: walls in a room)

l Two methods (screen space, eye space)
l Which stages benefits?

l  Rasterizer stage

Backface culling (cont’d)
l  Often implemented for you in the API
l  OpenGL:

l  glCullFace(GL_BACK);
l  glEnable(GL_CULL_FACE);

l  How to determine what faces away?
l  First, must have consistently oriented polygons, e.g.,

counterclockwise

0

1

2

front facing
0 1

2

back facing

l Two ways in different spaces:

screen space

1

0

2

front

0
1

2

back

eye

front

back

eye space

How to cull backfaces

View-Frustum Culling
l Bound every “natural” group of primitives

by a simple volume (e.g., sphere, box)
l  If a bounding volume (BV) is outside the

view frustum, then the entire contents of
that BV is also outside (not visible)

Can we accelerate view frustum
culling further?
l Do what we always do in graphics…
l Use a hierarchical approach, e.g., a

spatial data structure (BVH, BSP)
l Which stages benefits?

–  Geometry and Rasterizer
–  Possibly also bus between CPU and Geometry

Example of Hierarchical View
Frustum Culling

root

camera

Portal Culling
Images courtesy of David P. Luebke and Chris Georges

l  Average: culled 20-50% of the polys in view
l  Speedup: from slightly better to 10 times

Refined view frustum culling:
frustum gets smaller for each door

Portal culling example
l  In a building from above
l  Circles are objects to be rendered

Portal Culling Algorithm (1)
l Divide into cells with portals (build graph)
l For each frame:

–  Locate cell of viewer and init 2D AABB to whole
screen

–  * Render current cell with View Frustum culling
w.r.t. AABB

–  Traverse to closest cells (through portals)
–  Intersection of AABB & AABB of traversed portal
–  Goto *

l When to exit:
–  When the current AABB is empty
–  When we do not have enough time to render a

cell (“far away” from the viewer)

l Also: mark rendered objects

Portal Culling Algorithm (2)

Occlusion Culling

l Main idea: Objects that
lies completely
“behind” another set of
objects can be culled

l Hard problem to solve
efficiently

l Has been lots of
research in this area
l OpenGL: “Occlusion

Queries”

Example

final image

l Note that “Portal Culling” is type of
occlusion culling

Occlusion culling algorithm
Use some kind of occlusion
representation OR

for each object g do:
 if(not Occluded(OR ,g))
 render(g);
 update(OR ,g);
 end;
end;

Level-of-Detail Rendering
l  Use different levels of detail at different

distances from the viewer
l  More triangles closer to the viewer

LOD rendering
l  Not much visual difference, but a lot faster

l  Use area of projection of BV to select
appropriate LOD

Car chair
Area?

Scene graph with LODs

Large area
medium

area

small
area

Far LOD rendering
l When the object is far away, replace with

a quad of some color
l When the object is really far away, do

not render it (called: detail culling)!
l Use projected area of BV to determine

when to skip

Misc
l Half Time wrapup slides will be available

in “Schedule” on home page
l There is an Advanced Computer

Graphics Seminar Course in sp 3+4, 7.5p
–  One seminar every week

l  Discussing advanced CG papers and techniques

–  Do a project of your choice.
–  Register to the course

Exercise
l Create a function (by writing code on

paper) that performs hierarchical view
frustum culling
–  void hierarchicalVFC(node* sceneGraphNode)

Tomas Akenine-Mőller © 2002

l Target: urban scenery
–  dense occlusion
–  viewer is about 2 meters above

ground

l Algorithm:
–  Process scene in front-to-back

using a quad tree
–  Maintain a piecewise constant

horizon
–  Cull objects against horizon
–  Add visible objects’ occluding power

to the horizon

Occlusion Horizon
BONUS MATERIAL

Tomas Akenine-Mőller © 2002

Occlusion testing with occlusion
horizons
l To process tetrahedron (which is behind

grey objects):
–  find axis-aligned box of projection
–  compare against occlusion horizon

culled

Tomas Akenine-Mőller © 2002

Update horizon
l When an object is considered visible:
l Add its “occluding power” to the

occlusion representation

Tomas Akenine-Mőller © 2002

Example:

l  Read about the details in paper on website
(compulsory material!)

