Spatial Data Structures and Speed-Up Techniques

Ulf Assarsson Department of Computer Science and Engineering Chalmers University of Technology

Have you done your homework ;-)? Exercises

- Create a function (by writing code on paper) that tests for intersection between:
 - two spheres
 - a ray and a sphere
 - view frustum and a sphere
 - Ray and triangle (e.g. use formulas from last lecture)
- Make sure you understand matrices:
 - Give a scaling matrix, translation matrix, rotation matrix and simple orthogonal projection matrix

Ray/sphere test

- Ray: $\mathbf{r}(t) = \mathbf{0} + t\mathbf{d}$
- Sphere center: c, and radius r
- Sphere formula: ||p-c||=r
- Replace **p** by $\mathbf{r}(t)$, and square it:

$$(\mathbf{o} + t\mathbf{d} - \mathbf{c}) \cdot (\mathbf{o} + t\mathbf{d} - \mathbf{c}) - r^2 = 0$$

$$t^2 + 2((\mathbf{o} - \mathbf{c}) \cdot \mathbf{d})t + (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - r^2 = 0$$

$$ax^2 + bx + c = 0 \implies x = \frac{-b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}}$$

Bool raySphereIntersect(vec3f o, d, c, float r, Vec3f &hitPt) { float b = $2.0f^*((o-c).dot(d))$; // dot is implemented in class Vec3f float c = (o-c).dot(o-c); if(b*b/4.0f<c) return false; float t = -b/(2.0f) - sqrt(b*b/4.0f-c); // intersection for smallest t if (t<0) t = $-b/(2.0f^*a) + sqrt(b*b/4.0f-c)$; // larger t if (t<0) return false; else hitPt = $o+d^*t$; // where * is an operator for vec mul return true;

d 🔹

Misc

 Half Time wrapup slides are available in "Schedule" on home page

There is an Advanced Computer
 Graphics Seminar Course in sp 3+4, 7.5p

- One seminar every week
 - Advanced CG techniques
- Do a project of your choice.
- Register to the course

Spatial data structures

• What is it?

- Data structure that organizes geometry in 2D or 3D or higher
- The goal is faster processing
- Needed for most "speed-up techniques"
 - Faster real-time rendering
 - Faster intersection testing
 - Faster collision detection
 - Faster ray tracing and global illumination

• Games use them extensively

- Movie production rendering tools always use them too
- (You may read "Designing a PC Game Engine". Link available on website)

How? Organizes geometry in some hierarchy In 2D space Data structure

What's the point? An example

Assume we click on screen, and want to find which object we clicked on

click!

Test the root first
 Descend recursively as needed
 Terminate traversal when possible
 In general: get O(log n) instead of O(n)

3D example

Bounding Volume Hierarchy (BVH)

- Most common bounding volumes (BVs):
 - Sphere
 - Boxes (AABB and OBB)

 The BV does not contibute to the rendered image -- rather, encloses an object

• The data structure is a *k*-ary tree

- Leaves hold geometry
- Internal nodes have at most k children
- Internal nodes hold BVs that enclose all geometry in its subtree

Some facts about trees

- *Height of tree, h,* is longest path from root to leaf
- A balanced tree is full except for possibly missing leaves at level h
- Height of <u>balanced</u> tree with *n* nodes: floor(log_k(*n*))
- Binary tree (*k*=2) is the simplest
 - k=4 and k=8 is quite common for computer graphics as well

How to create a BVH? Example: BV=AABB

• Find minimal box, then split along longest axis

Stopping criteria for Top-Down creation

- Need to stop recursion some time...
 - Either when BV is empty
 - Or when only one primitive (e.g. triangle) is inside BV
 - Or when <*n* primitives is inside BV
 - Or when recursion level l has been reached

Similar critera for BSP trees and octrees

Example

Killzone (2004-PS2) used kdtree / AABBtree based system for the collision detection

Kd-tree = Axis Aligned BSP tree

Binary Space Partitioning (BSP) Trees

• Two different types:

- Axis-aligned
- Polygon-aligned
- General idea:
 - Split space with a plane
 - Divide geometry into the space it belongs
 - Done recursively
- If traversed in a certain way, we can get the geometry sorted back-to-front or front-to-back w.r.t. a camera position
 - Exact for polygon-aligned
 - Approximately for axis-aligned

- Split space with a plane
- Divide geometry into the space it belongs
- Done recursively

Axis-Aligned BSP tree (1)

 Can only make a splitting plane along x,y, or z

- Each internal node holds a divider plane
- Leaves hold geometry
- Differences compared to BVH
 - BSP tree encloses entire space and provides sorting
 - The BV hierarchy can have spatially overlapping nodes(no sort)
 - BVHs can use any desirable type of BV

Axis-aligned BSP tree Rough sorting

- Test the planes, recursively from root, against the point of view. For each traversed node:
 - If node is leaf, draw the node's geometry
 - else

1a

- Continue traversal on the "hither" side with respect to the eye (to sort front to back)
- Then, continue on the farther side.

 Works in the same way for polygonaligned BSP trees --- but that gives exact sorting

Polygon Aligned BSP tree – Quake 2

Example – Quake 2

Polygon-aligned BSP tree

Allows exact sorting
 Very similar to axis-aligned BSP tree

 But the triangle planes are used as the splitting planes

Drawing Back-to-Front {
 recurse on farther side of P;
 Draw P;
 Recurse on hither side of P;

//Where hither and farther are with respect to viewpoint **v**

Algorithm for BSP trees

class BSPtree: Polygon P; BSPtree behindP; BSPtree frontOfP;

```
Tree CreateBSP(PolygonList L) {
    If L empty, return empty tree;
    Else:
        T->P = arbitrary polygon in L.
        T->behindP = CreateBSP(polygons behind P)
        T->frontOfP = CreateBSP(polygons in front of P)
        Return T.
```

```
}
```

```
Drawing Back-to-Front:
void DrawBSP(Tree t) {
    If (t==NULL) return;
    If eye front of polygon t->P:
        DrawBSP(t->behindP);
        Draw P;
        DrawBSP(t->frontOfP);
    Else:
        DrawBSP(t->frontOfP);
        Draw P;
        Draw P;
        DrawBSP(t->behindP);
```

Drawing Back-to-Front {
 recurse on farther side of P;
 Draw P;
 Recurse on hither side of P;

Octrees (1)

A bit similar to axis-aligned BSP trees
Will explain the quadtree, which is the 2D variant of an octree

¢

 In 3D, each square (or rectangle) becomes a box, and 8 children

Example of Octree

Recursively split space in eight parts – equaly along x,y,z dimension simultaneously for each level

Example of octree

Image from Lefebvre et al.

Example of octree

Image from Lefebvre et al.

Octrees (2)

Expensive to rebuild (BSPs are too)
(loose octrees, page 656, 3:rd ed.)
A relaxation to avoid problems

Octrees can be used to

- Speed up ray tracing
- Faster picking
- Culling techniques
- Are not used that often in real-time contexts
 - An exception is loose octrees

Scene graphs

• BVH is the data structure that is used most often

- Simple to understand
- Simple code

• However, it stores just geometry

Rendering is more than geometry

• The scene graph is an extended BVH with:

- Lights
- Materials
- Transforms
- And more
- Typically the logical structure

Scene Graphs

Scene Graphs

Speed-Up Techniques

 Spatial data structures are used to speed up rendering and different queries

Why more speed?

- Graphics hardware 2x faster in 6-12 months!
- Wait... then it will be fast enough!
- NOT!
- We will never be satisfied
 - Screen resolution: angular resolution in "gula fläcken" ~0.001 degree (eye sweeps scene)
 - Apple's retina screen: 2880 x 1800
 - Realism: global illumination
 - Geometrical complexity: no upper limit!

What we'll treat now

- Culling techniques
- Level-of-detail rendering (LODs)

"To cull" means "to select from group"
 "Sort out", "remove", "cut away", something picked out and put aside as inferior.

 In graphics context: do not process data that will not contribute to the final image

Different culling techniques (red objects are skipped)

Backface Culling

• Simple technique to discard polygons that faces away from the viewer

• Can be used for:

closed surface (example: sphere)

 or whenever we know that the backfaces never should be seen (example: walls in a room)

Two methods (screen space, eye space)

- Which stages benefits?
 - Rasterizer stage

Backface culling (cont'd)

- Often implemented for you in the API
- OpenGL:
 - glCullFace(GL_BACK);
 - glEnable(GL_CULL_FACE);
- How to determine what faces away?
- First, must have consistently oriented polygons, e.g., counterclockwise

2

back facing

How to cull backfaces Two ways in different spaces:

View-Frustum Culling

 Bound every "natural" group of primitives by a simple volume (e.g., sphere, box)

 If a bounding volume (BV) is outside the view frustum, then the entire contents of that BV is also outside (not visible)

Can we accelerate view frustum culling further?

- Do what we always do in graphics...
- Use a hierarchical approach, e.g., a spatial data structure (BVH, BSP)
- Which stages benefits?
 - Geometry and Rasterizer
 - Possibly also bus between CPU and Geometry

Example of Hierarchical View Frustum Culling

root

Refined view frustum culling: frustum gets smaller for each door

Portal Culling

Images courtesy of David P. Luebke and Chris Georges

Average: culled 20-50% of the polys in view
Speedup: from slightly better to 10 times

Portal culling example

- In a building from above
- Circles are objects to be rendered

Portal Culling Algorithm (1)

- Divide into cells with portals (build graph)
- For each frame:
 - Locate cell of viewer and init 2D AABB to whole screen
 - * Render current cell with View Frustum culling w.r.t. AABB
 - Traverse to closest cells (through portals)
 - Intersection of AABB & AABB of traversed portal
 Goto *

Portal Culling Algorithm (2)

• When to exit:

- When the current AABB is empty
- When we do not have enough time to render a cell ("far away" from the viewer)
- Also: mark rendered objects

Occlusion Culling

 Main idea: Objects that lies completely "behind" another set of objects can be culled Hard problem to solve efficiently Has been lots of research in this area OpenGL: "Occlusion Queries"

Note that "Portal Culling" is type of occlusion culling

Occlusion culling algorithm Use some kind of occlusion representation O_R for each object **g** do: if (not Occluded (O_R, g)) render(\boldsymbol{g}); update(O_R ,g);

end;

end;

Level-of-Detail Rendering

- Use different levels of detail at different distances from the viewer
- More triangles closer to the viewer

LOD rendering

• Not much visual difference, but a lot faster

 Use area of projection of BV to select appropriate LOD

Far LOD rendering

- When the object is far away, replace with a quad of some color
- When the object is *really far away*, do not render it (called: detail culling)!
- Use projected area of BV to determine when to skip

Misc

• Half Time wrapup slides will be available in "Schedule" on home page

There is an Advanced Computer
 Graphics Seminar Course in sp 3+4, 7.5p

One seminar every week

• Discussing advanced CG papers and techniques

- Do a project of your choice.
- Register to the course

Exercise

 Create a function (by writing code on paper) that performs hierarchical view frustum culling

void hierarchicalVFC(node* sceneGraphNode)

BONUS MATERIAL Occlusion Horizon

- Target: urban scenery
 - dense occlusion
 - viewer is about 2 meters above ground
- Algorithm:
 - Process scene in front-to-back using a quad tree
 - Maintain a piecewise constant horizon
 - Cull objects against horizon
 - Add visible objects' occluding power to the horizon

Tomas Akenine-Mőller © 2002

Occlusion testing with occlusion horizons

- To process tetrahedron (which is behind grey objects):
 - find axis-aligned box of projection
 - compare against occlusion horizon

Update horizon

When an object is considered visible:
Add its "occluding power" to the occlusion representation

Read about the details in paper on website (compulsory material!)

Tomas Akenine-Mőller © 2002