
TDA361 – Computer Graphics
Teacher: Ulf Assarsson

 Chalmers University of Technology

This	Course	
•  Algorithms!	

Real-time Rendering

Understanding of
Ray Tracing

Tracing Photons

One way to form an image is to
follow rays of light from a
point source finding which
rays enter the lens of the
camera. However, each
ray of light may have
multiple interactions with objects
before being absorbed or going to infinity.

Other Physical Approaches
• Ray tracing: follow rays of light from center of

projection until they either are absorbed by
objects or go off to infinity

– Can handle global effects
•  Multiple reflections
•  Translucent objects

– Faster but still slow

Course Info

�  Study Period 2 (lp2)
� Real Time Rendering, 3rd edition
◦ Available on Cremona

� Homepage:
◦ Google “TDA361” or
◦  “Computer Graphics Chalmers”

Tutorials
�  All laborations are in C++ and OpenGL
◦  Industry standard
◦  No previous (C++) knowledge required

�  Six shorter tutorials that go through basic concepts
◦  Basics, Textures, Camera&Animation, Shading, Render-to-texture,

Shadow Mapping

�  One slightly longer lab where you put everything
together
◦  Render engine (e.g for a game)
 or
◦  Path tracer
◦  (Or own project)

Laborations

� All laborations are in C++ and OpenGL
◦  Industry standard
◦ No previous (C++) knowledge required

�  Six shorter tutorials that go through basic
concepts
◦  Basics, Textures, Camera&Animation, Shading,

Render-to-texture, Shadow Mapping

� One slightly longer lab where you put
everything together

Tutorials
•  Rooms 4225

– Or your favorite place/home
•  4th floor EDIT-building
•  EntranceCards (inpasseringskort)

– Automatically activated for all of you that are
course registered and have a CTH/GU-entrance
card (inpasseringskort)

•  Recommended to do the tutorials in groups
(Labgrupper) of 2, or individually if you
prefer.

Lab Partner List

•  Do the tutorials individually
or in pairs.

•  If you want a lab partner
– Write your name + email on

list at desk in the break.

Overview of the
Graphics Rendering Pipeline

and OpenGL

 Department of Computer Engineering

3D Graphics

Ulf
Assarsson

 Department of Computer Engineering

The screen consists of pixels

 Department of Computer Engineering

3D-Rendering
•  Objects are often made

of triangles
•  x,y,z- coordinate for

each vertex

Z

X

Y

 Department of Computer Engineering

Grafikkort

 Department of Computer Engineering

4D Matrix Multiplication

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

••

••

••

w
z
y
x

ts
ts
ts

zz

yy

xx

1000

 Department of Computer Engineering

Real-Time Rendering�

 Department of Computer EngineeringState-of-the-Art
Real-Time Rendering�

2001
Z

X

Y

 Department of Computer Engineering

+ =

l One application of texturing is to ”glue”
images onto geometrical object

Textures

 Department of Computer Engineering

Texturing: Glue images onto
geometrical objects

•  Purpose: more realism, and this is a cheap way to do
it

+ =

 Department of Computer Engineering

Lighting computation per triangle vertex

light

Geometry

blue

red green

Rasterizer

The Graphics Rendering
Pipeline

You say that you render a
”3D scene”, but what is it?

•  First, of all to take a picture, it takes a camera – a
virtual one.
–  Decides what should end up in the final image

•  A 3D scene is:
–  Geometry (triangles, lines, points, and more)
–  Light sources
–  Material properties of geometry

•  Colors, shader code ,
•  Textures (images to glue onto the geometry)

•  A triangle consists of 3 vertices
–  A vertex is 3D position, and may

include normals.

Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

•  The pipeline is the ”engine” that creates
images from 3D scenes

•  Three conceptual stages of the pipeline:
– Application (executed on the CPU)
– Geometry
– Rasterizer

Application Geometry Rasterizer

3D
scene input

Image

output

The APPLICATION stage

•  Executed on the CPU
– Means that the programmer decides what

happens here
•  Examples:

– Collision detection
– Speed-up techniques
– Animation

•  Most important task: feed geometry stage
with the primitives (e.g. triangles) to render

Application Geometry Rasterizer

The GEOMETRY stage

• 

•  Allows:

– Move objects (matrix multiplication)
– Move the camera (matrix multiplication)
– Lighting computations per triangle vertex
– Project onto screen (3D to 2D)
– Clipping (avoid triangles outside screen)
– Map to window

Application Geometry Rasterizer

Task: ”geometrical” operations
on the input data (e.g. triangles)

The GEOMETRY stage

•  (Instances)
•  Vertex Shader

– A program executed
per vertex

•  Transformations
•  Projection
•  E.g., color per vertex

•  Clipping
•  Screen Mapping

Application Geometry Rasterizer

Model & View
Transform

Vertex
Shading

Projection

Clipping

Screen
Mapping

The RASTERIZER stage
•  Main task: take output from GEOMETRY

and turn into visible pixels on screen

Application Geometry Rasterizer

l  Computes color per pixel, using fragment
shader (=pixel shader)
- textures, (light sources, normal), colors and various
other per-pixel operations

l  And visibility is resolved here: sorts the
primitives in the z-direction

The rasterizer stage

Triangle
Setup

Triangle
Traversal

Pixel
Shading

Merging

Triangle Setup:
•  collect three vertices + vertex shader output (incl.

normals) and make one triangle.

Triangle Traversal
•  Scan conversion

Pixel Shading
•  Compute pixel color

Merging:
•  output color to screen

Rendering Pipeline and
Hardware

Application Stage

Geometry Stage

Rasterization Stage

CPU GPU

Tomas Akenine-Mőller © 2003 30

Rendering Pipeline and
Hardware

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Appli-
cation
Stage

CPU

Geometry Stage

Rasterization Stage

GPU

Tomas Akenine-Mőller © 2003 31

Hardware design

light

Geometry

blue

red green

Vertex shader:

• Lighting (colors)

• Screen space positions

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 2003 32

Hardware design Geometry shader:

• One input primitive

• Many output primitives

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

or

Geometry Stage

Tomas Akenine-Mőller © 2003 33

Hardware design Clips triangles against
the unit cube (i.e.,
”screen borders”)

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 2003 34

Hardware design Maps window size to
unit cube

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Rasterizer Stage
Geometry stage always operates inside
a unit cube [-1,-1,-1]-[1,1,1]
Next, the rasterization is made against a
draw area corresponding to window
dimensions.

Hardware design

Tomas Akenine-Mőller © 2003 35

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Collects three vertices
into one triangle Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 2003 36

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Creates the fragments/
pixels for the triangle Rasterizer Stage

blue

red green
Rasterizer

Hardware design

Tomas Akenine-Mőller © 2003 37

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Pixel Shader:
Compute color
using:
• Textures
• Interpolated data
(e.g. Colors +
normals) from
vertex shader

Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 2003 38

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Frame buffer:
•  Color buffers

•  Depth buffer

•  Stencil buffer

The merge units update
the frame buffer with the
pixel’s color

Rasterizer Stage

 Department of Computer Engineering

What is vertex and fragment (pixel)
shaders?

•  Vertex shader: reads from textures
•  Fragment shader: reads from

textures, writes to pixel color
•  Memory: Texture memory (read +

write) typically 500 Mb – 4 GB
•  Program size: the smaller the faster
•  Instructions: mul, rcp, mov,dp, rsq, exp, log,

cmp, jnz…

 Department of Computer Engineering

Shaders

// Fragment Shader:
#version 130
in vec3 outColor;
out vec4 fragColor;

void main()
{

fragColor = vec4(outColor,1);
}

// Vertex Shader
#version 130

in vec3 vertex;
in vec3 color;
out vec3 outColor;
uniform mat4 modelViewProjectionMatrix;

void main()
{
 gl_Position = modelViewProjectionMatrix*vec4(vertex,1);
 outColor = color;
}

 Department of Computer Engineering

Fragment Shader
vec3 compute_color()
{
 vec4 gbuffer = texture2D(tex0, uv_0);

int intColor = int(gbuffer.x);
int r = (intColor/256)/256;
intColor -= r*256*256;
int g = intColor/256;
intColor -= g*256;
int b = intColor;
 vec3 color = vec3(float(r)/255.0, float(g)/255.0,
float(b)/255.0);

normal = vec3(sin(gbuffer.g) * cos(gbuffer.b),
sin(gbuffer.g)*sin(gbuffer.b), cos(gbuffer.g));
vec2 ang = gbuffer.gb*2.0-vec2(1.0);
vec2 scth = vec2(sin(ang.x * PI), cos(ang.x * PI);
vec2 scphi = vec2(sqrt(1.0 - ang.y*ang.y), ang.y);
normal = -vec3(scth.y*scphi.x, scth.x*scphi.x, scphi.y);
roughness = 0.05;
specularity = 1.0;
fresnelR0 = 0.3;
return color;

}

precision highp float;

uniform sampler2D tex0;
uniform sampler2D tex1;
uniform sampler2D tex2;
uniform sampler2D tex3;

uniform float val;

varying vec2 uv_0;
varying vec3 n;

void main(void) {
gl_FragColor.rgb = compute_color();
gl_FragColor.a = 1.0;

}

 Department of Computer Engineering

Cg - ”C for Graphics” (NVIDIA)

 Department of Computer Engineering

•  Float, int
•  Instructions

operate on 1,2,3 or
4 components
–  x,y,z,w or
–  r,g,b,a

•  Free Swizzling
•  Only read from

texture
•  (Only write to

pixel (8 output
buffers))

PixelShader 3.0
normalization

Rewind!
Let’s take a closer look
•  The programmer ”sends” down primtives to

be rendered through the pipeline (using API
calls)

•  The geometry stage does per-vertex
operations

•  The rasterizer stage does per-pixel
operations

•  Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer

GEOMETRY - Summary
Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Done in vertex shader
Fixed hardware function

Virtual Camera
•  Defined by position, direction vector, up

vector, field of view, near and far plane.

point
dir

near
far

fov
(angle)

l  Create image of geometry inside gray region
l  Used by OpenGL, DirectX, ray tracing, etc.

GEOMETRY - The view transform
•  You can move the camera in the same

manner as objects
•  But apply inverse transform to objects, so

that camera looks down negative z-axis

z x

Application Geometry Rasterizer

GEOMETRY - Summary
Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Done in vertex shader
Fixed hardware function

GEOMETRY - Summary
Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Done in vertex shader
Fixed hardware function

GEOMETRY - Projection
Application Geometry Rasterizer

•  Two major ways to do it
– Orthogonal (useful in few applications)
– Perspective (most often used)

•  Mimics how humans perceive the world, i.e.,
objects’ apparent size decreases with distance

GEOMETRY - Projection
•  Also done with a matrix multiplication!
•  Pinhole camera (left), analog used in CG

(right)

Application Geometry Rasterizer

GEOMETRY - Summary
Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Done in vertex shader
Fixed hardware function

GEOMETRY
Clipping and Screen Mapping
•  Square (cube) after projection
•  Clip primitives to square

Application Geometry Rasterizer

l  Screen mapping, scales and translates the
square so that it ends up in a rendering window

l  These ”screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

GEOMETRY - Summary
Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Done in vertex shader
Fixed hardware function

The RASTERIZER
in more detail

•  Scan-conversion
– Find out which pixels are inside the primitive

•  Fragment shaders
– E.g. put textures on triangles
– Use interpolated data over triangle
–  and/or compute per-pixel lighting

•  Z-buffering
– Make sure that what is visible from the camera

really is displayed
•  Doublebuffering

Application Geometry Rasterizer

blue

red green

+ =

The RASTERIZER
Z-buffering

•  A triangle that is covered by a more closely
located triangle should not be visible

•  Assume two equally large tris at different
depths

Application Geometry Rasterizer

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct

•  Would be nice to avoid sorting…
•  The Z-buffer (aka depth buffer) solves this
•  Idea:

– Store z (depth) at each pixel
– When rasterizing a triangle, compute z at each

pixel on triangle
– Compare triangle’s z to Z-buffer z-value
–  If triangle’s z is smaller, then replace Z-buffer and

color buffer
– Else do nothing

•  Can render in any order

Application Geometry Rasterizer The RASTERIZER
Z-buffering

Painter’s Algorithm
• Render polygons a back to front order so that polygons

behind others are simply painted over

B behind A as seen by viewer Fill B then A

• Requires ordering of polygons
first

– O(n log n) calculation for ordering
– Not every polygon is either in
front or behind all other polygons

I.e., : Sort all triangles and
render them back-to-front.

z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel found
so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

•  The monitor displays one image at a time
•  Top of screen – new image

 Bottom – old image
 No control of split position

•  And even worse, we often clear the screen
before generating a new image

•  A better solution is ”double buffering”
–  (Could instead keep track of rasterpos and

vblank).

Application Geometry Rasterizer The RASTERIZER
double-buffering

•  Use two buffers: one front and one back
•  The front buffer is displayed
•  The back buffer is rendered to
•  When new image has been created in back

buffer, swap front and back

Application Geometry Rasterizer

The RASTERIZER
double-buffering

Screen Tearing
Swapping back/
front buffers

vblank

Screen Tearing
•  Despite the gorgeous graphics seen in many of today's games, there are

still some highly distracting artifacts that appear in gameplay despite
our best efforts to suppress them. The most jarring of these is screen
tearing. Tearing is easily observed when the mouse is panned from
side to side. The result is that the screen appears to be torn between
multiple frames with an intense flickering effect. Tearing tends to be
aggravated when the framerate is high since a large number of frames
are in flight at a given time, causing multiple bands of tearing.

•  Vertical sync (V-Sync) is the traditional remedy to this problem, but as
many gamers know, V-Sync isn't without its problems. The main
problem with V-Sync is that when the framerate drops below the
monitor's refresh rate (typically 60 fps), the framerate drops
disproportionately. For example, dropping slightly below 60 fps results
in the framerate dropping to 30 fps. This happens because the monitor
refreshes at fixed internals (although an LCD doesn't have this
limitation, the GPU must treat it as a CRT to maintain backward
compatibility) and V-Sync forces the GPU to wait for the next refresh
before updating the screen with a new image. This results in notable
stuttering when the framerate dips below 60, even if just momentarily.

OpenGL

A Simple Program
Computer Graphics version of

“Hello World”
Generate a triangle on a solid background

int main(int argc, char *argv[])
{

 glutInit(&argc, argv);

 /* open window of size 512x512 with double buffering, RGB colors, and Z-
buffering */
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(512,512);
 glutCreateWindow("Test App");

 /* the display function is called once when the gluMainLoop is called,

 * but also each time the window has to be redrawn due to window
 * changes (overlap, resize, etc). */

 glutDisplayFunc(display); // Set the main redraw function

 glutMainLoop(); /* start the program main loop */
 return 0;

}

Simple Application...

void display(void)
{

 glClearColor(0.2,0.2,0.8,1.0); // Set clear color - for background
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer

 int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);
 int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);
 glViewport(0, 0, w, h); // Set viewport (OpenGL draws with this resolution)

 glDisable(GL_CULL_FACE);
 drawScene();

 glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

}

static void drawScene(void)
{

 // Shader Program
 glUseProgramObjectARB(shaderProgram); // Set the shader program to use for this draw call
 CHECK_GL_ERROR();

 glBindVertexArray(vertexArrayObject); // Tells which vertex arrays to use
 CHECK_GL_ERROR();

 glDrawArrays(GL_TRIANGLES, 0, 3); // Render the three first vertices as a triangle
 CHECK_GL_ERROR();

}

Shaders
// Fragment Shader:
#version 130
in vec3 outColor;
out vec4 fragColor;

void main()
{

 fragColor = vec4(outColor,1);
}

// Vertex Shader
#version 130

in vec3 vertex;
in vec3 color;
out vec3 outColor;
uniform mat4 modelViewProjectionMatrix;

void main()
{
 gl_Position = modelViewProjectionMatrix*vec4(vertex,1);
 outColor = color;
}

Demonstration of SimpleApp
–  Available on course homepage in Schedule.
– You need OpenGL 3.0 or later

Cool application

Starts
looking
good!

Simple Application...
#ifdef WIN32
#include <windows.h>
#endif

#include <GL/glut.h> // This also includes gl.h

static void drawScene(void)
{

 glColor3f(1,1,1);

 glBegin(GL_POLYGON);
 glVertex3f(4.0, 0, 4.0);
 glVertex3f(4.0, 0,-4.0);
 glVertex3f(-4.0, 0,-4.0);
 glEnd();

}

Usually this and next 2
slides are put in the
same file main.cpp

BONUS

void display(void)
{

 glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer

 and the z-buffer
 int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);
 int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);
 glViewport(0, 0, w, h); // Set viewport

 glMatrixMode(GL_PROJECTION); // Set projection matrix
 glLoadIdentity();
 gluPerspective(45.0,w/h, 0.2, 10000.0); // FOV, aspect ratio, near, far

 glMatrixMode(GL_MODELVIEW); // Set modelview matrix
 glLoadIdentity();

 gluLookAt(10, 10, 10, // look from
 0, 0, 0, // look at
 0, 0, 1); // up vector

 drawScene();
 glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

}

Simple Application
BONUS

Changing Color per Vertex
static void drawScene(void)
{

 // glColor3f(1,1,1);
 glBegin(GL_POLYGON);
 glColor3f(1,0,0);
 glVertex3f(4.0, 0, 4.0);

 glColor3f(0,1,0);
 glVertex3f(4.0, 0,-4.0);

 glColor3f(0,0,1);
 glVertex3f(-4.0, 0,-4.0);
 glEnd();

}

BONUS

Repetition
•  What is important:

– Understand the Application-, Geometry- and
Rasterization Stage

