TDA361 — Computer Graphics

Teacher: UlIf Assarsson

Chalmers University of Technology

This Course
e Algorithms!

Understanding of
Ray Tracing

Real-time Rendering

Tracing Photons

One way to form an 1mage 1s to
follow rays of light from a
point source finding which

rays enter the lens of the

camera. However, each

ray of light may have
multiple interactions with objects
before being absorbed or going to infinity.

Other Physical Approaches

* Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

—Can handle global effects

* Multiple reflections
 Translucent objects

—Faster but still slow

Course Info

Real-Time

e Study Period 2 (Ip2) Rendering
o Real Time Rendering, 3" edition g 2

o Available on Cremona

........

> Google “TDA361” or
> “Computer Graphics Chalmers”

Tutorials

* All laborations are in C++ and OpenGL
° Industry standard

> No previous (C++) knowledge required

 Six shorter tutorials that go through basic concepts

o Basics, Textures, Camera&Animation, Shading, Render-to-texture,
Shadow Mapping

e One slightly longer lab where you put everythlng
together 0 Thead Bk = |
> Render engine (e.g for a game)

or
o Path tracer

o (Or own project)

30 Werld Tuterizl - SCLUTION

Tutorials
Rooms 4225

— Or your favorite place/home
4th floor EDIT-building

EntranceCards (1inpasseringskort)

— Automatically activated for all of you that are
course registered and have a CTH/GU-entrance
card (inpasseringskort)

Recommended to do the tutorials 1in groups
(Labgrupper) of 2, or individually 1f you
prefer.

[.ab Partner List

* Do the tutorials individuall
Or 1n pairs.
 If you want a lab partner

— Write your name + email on
list at desk 1n the break.

y

LAB PARTNER LIST

Sign up at a free slof, if you do not already have a lab partner. You can also do the

tutorials by yourself - in which case you do not need to sign up below,
£

Overview of the
Graphics Rendering Pipeline
and OpenGL

CHALMERS

Ulf
2 .\ A<CaArsson

CHALMERS Department of Computer Engineering

The screen consists of pixels

O0O0OO0O00O000O0O0O0
OO00OO0O000D0O00O0O0
O0O0OO0O0O0OO0O00OO0O0
© O 0O O0O00O0O0
© O O O 00000
o O ©OO000O0O0

OO0 00000000 O0
O0O0OO0O0000O0O0O0O0

O OO0 O O0OO0O0
O OO0 O O O0OO0O0

CHALMERS Department of Computer Engineering

3D-Rendering

* (Objects are often made
of triangles

* X,y,z- coordinate for
each vertex

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

-

Display scresn window

showing polygon's
projecion Z

Viewer's eye

CHALMERS

FESS

|
|
|
|

T GO LT T X U U L Lalald.

—

i
1 }-ﬂ.

=) B o om
mram llllalllil—-v
l‘lll"‘\"".l" "" i

Department of Computer Engineering

Grafikkort

o

B
ut
F o

-‘
wuss) z
&

NVIDIA.

GEFORCEGTX
580

CHALMERS Department of Computer Engineering

4D Matrix Multiplication

20
(n
N
S
D)
o
o
D)
a4

Real-Time

CHALMERS Department of Computer Engineering

Textures

e One application of texturing is to "glue”
images onto geometrical object

CHALMERS Department of Computer Engineering

Texturing: Glue 1images onto
geometrical objects

e Purpose: more realism, and this 1s a cheap way to do
it

CHALMERS Department of§ omputer Engineering

Lighting computation per triangle vertex

/ ® |ig ht Rasterizer

The Graphics Rendering
Pipeline

You say that you render a
“3D scene”, but what 18 1t?

» First, of all to take a picture, 1t takes a camera — a
virtual one.

— Decides what should end up in the final image

* A 3D scene is:
— Geometry (triangles, lines, points, and more)
— Light sources
— Material properties of geometry

* Colors, shader code ,
» Textures (images to glue onto the geometry) ’\

* A triangle consists of 3 vertices

— A vertex 1s 3D position, and may
mnclude normals.

Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

» The pipeline 1s the ’engine” that creates
images from 3D scenes

» Three conceptual stages of the pipeline:
— Application (executed on the CPU)
— Geometry

— Rasterizer

Application Geometry Rasterizer Image

B output

INput \scene

- Geometry Rasterizer
The APPLICATION stage

 Executed on the CPU

— Means that the programmer decides what
happens here

* Examples:
— Collision detection
— Speed-up techniques
— Animation

* Most important task: feed geometry stage
with the primitives (e.g. triangles) to render

Application - Rasterizer
The GEOMETRY stage

'.‘.‘0

. Task: "geometrical” operations ~
on the 1mnput data (e.g. triangles)

 Allows:

— Move objects (matrix multiplicatig;eje

— Move the camera (matrix multiplication)
— Lighting computations per triangle vertex
— Project onto screen (3D to 2D)

— Clipping (avoid triangles outside screen)

— Map to window

Application - Rasterizer
The GEOMETRY stage

Model & View | Vertex | Projection | Clipping | Screen
' Mapping

Transform | Shading |

Infinitely extending vigwing
frustum formed from
viewer's eye through the
comers of the display screen

* (Instances) i

 Vertex Shader

— A program executed
per vertex
e Transformations

Polygon in world

Display screen window
showing polygon's
projection

* Projection Viewer's eys
» E.g., color per vertex

* Clipping
* Screen Mapping

Application Geometry -

The RASTERIZER stage

* Main task: take output from GEOMETRY

and turn 1nto visible pixels on screen
|

/
/

D

/I

e Computes color per pixel, using fragment
shader (=pixel shader)

- textures, (light sources, normal), colors and various
other per-pixel operations

e And visibility is resolved here: sorts the
primitives in the z-direction

The rasterizer stage

Triangle Triangle Pixel Merging

Setup Traversal Shading

Triangle Setup:
» collect three vertices + vertex shader output (incl.
normals) and make one triangle.

Triangle Traversal
* Scan conversion

Pixel Shading
* Compute pixel color

Merging:
e output color to screen

Rendering Pipeline and
Hardware

CPU GPU

Application Stage Geometry Stage Rasterization Stage

Rendering Pipeline and

Hardware
CPU GPU
cation

Stage

Vertex Geometry Plxel
shader shader shader

Hardware design Vertex shader:

onghtlng (Colors)

*Screen space positions

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen ; -
windowi e o I Ig ht
: / blue
A'I Geometry}> B
red
Display screen window g ree n

showing polygon's
rojection
Viewer's eye Pl

Vertex Geometry Pixel
shader shader shader

Hardware design Geometry shader:

MRS *One input primitive

*Many output primitives

or

Vertex ‘ Geometry | Pixel
shader | shader | shader

Hardware desi gn Clips triangles against

Geometry Stage the unit cube (1.e.,

’screen borders”)

Vertex Geometry ‘ | Pixel
shader shader | | shader

Hardware design Maps window size to

Rasterizer Stage unit cube

Geometry stage always operates inside
a unit cube [-1,-1,-1]-[1,1,1]

Next, the rasterization is made against a
draw area corresponding to window
dimensions.

Vertex Geometry Pixel

shader shader shader

Hardware desi g N Collects three vertices
into one triangle

/>

Vertex Geometry Pixel
shader shader shader

Hardware desi gn Creates the fragments/
pixels for the triangle

/>+

Vertex Geometry
shader shader

/
[
|

(
T

Hardware design
/ AN
-
Pixel Shader:

blue Compute color
using:
*Textures
A eInterpolated data
(e.g. Colors +
| Rasterizerl normals) from
vertex shader

red green

Vertex Geometry Pixel
shader shader shader

Hardware desi gn The merge units update
the frame buffer with the

pixel’s color

oooooooooooo
lllllllllllllllllllllllllllll

- 4 it Frame buffer:
» * Color buffers
* Depth buffer
* Stencil buffer

CHALMERS Department of Computer Engineering
What 1s vertex and fragment (pixel)
shaders?

@ Foreach vertex, a vertex program (vertex shader) is executed

@ For cach fragment (pixel) a fragment program (fragment shader) is executed

CHALMERS Department of Computer Engineering

Shaders

-> HEEY

reen wi
i
rojection
Viewer's eye Prel

// Vertex Shader // Fragment Shader:
#version 130

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

#version 130

. , in vec3 outColor;
In vec3 vertex;

in vec3 color;
out vec3 outColor;
uniform mat4 model ViewProjectionMatrix;

out vec4 fragColor;

void main()

void main() 1

{ fragColor = vec4(outColor,1);
gl_Position = modelViewProjectionMatrix*vec4(vertex,1);)

outColor = color;

CHALMERS Department of Computer Engineering

Fragment Shader

vec3 compute_color()
precision highp float; { } N
vecd gbuffer = texture2D(tex0, uv_0);
uniform sampler2D tex0; int intColor = int(gbuffer x); 0 LN
uniform sampler2D tex1; int r = (intColor/256)/256; N
uniform sampler2D tex2; intColor -= r*256%256: ~
uniform sampler2D tex3; int g = intColor/256; T
intColor -= g*256;
uniform float val;

int b = intColor;

vec3 color = vec3(float(r)/255.0, float(g)/255.0,
varying vec2 uv_0; float(b)/255.0);

varying vec3 n;

normal = vec3(sin(gbuffer.g) * cos(gbuffer.b),

void main(void) { sin(gbuffer.g)*sin(gbuffer.b), cos(gbuffer.g));
gl_FragColor.rgb = compute_color(); vec2 ang = gbuffer.gb*2.0-vec2(1.0);
gl_FragColor.a = 1.0; vec2 scth = vec2(sin(ang.x * PI), cos(ang.x * PI);

b vec2 scphi = vec2(sqrt(1.0 - ang.y*ang.y), ang.y);

normal = -vec3(scth.y*scphi.x, scth.x*scphi.x, scphi.y);
roughness = 0.05;

specularity = 1.0;

fresnelRO = 0.3;

return color;

CHALMERS Department of Computer Engineering

if |(sl

Cg - ”C tor Graphics” (NVIDIA)

ice >= 0.0h)

half gradedEta = BallData.ETA;

gr

adedEta =|1.0h/gradedEta; | // test hack

half3 faceColor = BgColor; // blown out - go to BG color

half ¢l = |dot (-Vn,NL):;

half cs2 = 1.0h-gradedEta*gradedEta*(1.0h-cl*%cl);

if

(cs2 >= 0.0h) {
half3 refVector = gradedEta*Vn+((gradedEta*cl+sgrticsg)) *NL) !
// now let's intersect with the iris plane
half irisT = intersect plane(IN.OPosition,refVector,planeEquation)’
half fadeT = irisT * BallData.LENS DENSITY;

fadeT = fadeT * fadeT;

faceColor = DiffPupil.xxx; // temporary (?)
if (irisT > 0) {
half3 irisPoint = [IN.OPosition|+ irisT*refVector;
half3 iris3ST = (irisScale*irisPoint) + half3 (0.0h,0.5h,0.5h);

faceColor =|texZ2D(ColorMap,irissST.vz) .rgbf

¥
faceColor = |lerp(faceColor,LensColor, fadeT) |

hitColor = lerp(missColor, faceColor,smoothstep (0.0h,GRADE,slice)) ;

CHALMERS

/4 if (-dir.z/|dir| > cos(PI/4)) tl = zero

dp3 r6.w, r6, r6 li .
rsq r6.w, ré.uw normalization

mad rO.w, -ré6.z, r6.w, —-CosPiOverFour
crp rl1l0.vy, rO.w, Zero, rl0.y

// set rl0 to 0 if Disc <= 0
crop r10.xy, -r?7.w, Zero, rl0

// compute rl and r2 clipped
mad rl.xvyvz, r6e, rl0.x, r4
mad r2.xvyz, re, rl0.y, r4

// proiject

rcp rll.w, rl.z

mad rl.xvyvz, rl, rll.w, NegZ
rcp rll.w, r2.z
mad r2.xvyvz, r2, rll.w, NegZ

// Compute area
texld r3, rl, ATanZTexture
texld r4, r2, ATanZTexture

c¢crs r5.z,rl1,r2
abs r5.z,r5.z

mov r3.y, r4.x
texld r4, r3, SphireaTexture

£
£

£

£

£
£

Department of Computer Engineering

PixelShader 3.0

()

[)
IFO
IP1
PO

[)
P1

)
thetal
thetal

)

iz = 2

// lookup theta/PI

Float, int

Instructions
operate on 1,2,3 or
4 components

— X,Y,Z,W Or

- r,gb,a

Free Swizzling

Only read from
texture

(Only write to
pixel (8 output
buffers

Application Geometry Rasterizer

Rewind!
[et’s take a closer look

e The programmer ”sends” down primtives to
be rendered through the pipeline (using API
calls)

* The geometry stage does per-vertex
operations

* The rasterizer stage does per-pixel
operations

* Next, scrutinize geometry and rasterizer

Application - Rasterizer
GEOMETRY - Summary

——p | Q)

T N (T =N
HTQ §\ﬁ0 O y O
ﬂC}D*_’ -) \\—> ¥
O \Q ~
\S J/ \L DJ/ A\ D
model space world space world space camera space
o\ O L AL o -l
< © .
iecti : map to screen
compute lighting irﬁ;‘;’:‘;t;‘;r(‘;e clip

Done 1n vertex shader

Fixed hardware function

Virtual Camera

* Defined by position, direction vector, up
vector, field of view, near and far plane.

dir
point far
fov near

(angle)

Sameny

e Create image of geometry inside gray region
e Used by OpenGL, DirectX, ray tracing, etc.

Application - Rasterizer
GEOMETRY - The view transform

* You can move the camera in the same
manner as objects

* But apply inverse transform to objects, so

that camera looks down negative z-axis
> /

NS — gﬁ \V
L&/

GEOMETRY - Summary

’J_‘

©

Application - Rasterizer

~

)

—>

ﬂ(}ﬂ——»
@,

|

\

~ & |
\\

\e

@
~ =

)

model space world space
N l N
I Y Len)
\L i) _
compute lighting _ projection
image space

Done 1n vertex shader

G

world space

clip

.

)yQ
Q

N 7

camera space

S

map to screen

Fixed hardware function

=of

’J_‘

©

model space

olO

——p | Q)

O

|

world space

\
—> \Q

\
world space

Application - Rasterizer
GEOMETRY - Summary

Tt

OyQ
Q

@
~—>
|

camera space

"y

O

S

compute lighting

projection

Image space

Done 1n vertex shader

clip

map to screen

Fixed hardware function

ropicaron [Reserner
GEOMETRY - Projection

* Two major ways to do 1t
— Orthogonal (useful in few applications)
— Perspective (most often used)

e Mimics how humans perceive the world, 1.¢.,
objects’ apparent size decreases with distance

Application - Rasterizer

GEOMETRY - Projection

* Also done with a matrix multiplication!

* Pinhole camera (left), analog used in CG

(right)

=~
-
-
- -
-

=of

’J_‘

©

Application - Rasterizer
GEOMETRY - Summary

model space

olO

——p | Q)

O

|

Tt

on
Q

\
—> \Q

world space

@
~—>
|

\
world space

camera space

_e
\

O |=»

S

compute lighting

projection

Image space

Done 1n vertex shader

clip

map to screen

Fixed hardware function

GEOMETRY Application - Rasterizer
Clipping and Screen Mapping

* Square (cube) after projection
* Clip primitives to square

P <7_. - <
O O

e Screen mapping, scales and translates the
square so that it ends up in a rendering window

e These "screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

GEOMETRY - Summary

=of

’J_‘

©

Application - Rasterizer

model space

olO

——p | Q)

O

|

Tt

\
—> \Q

world space

@
~—>
|

OyQ
Q

\
world space

_e
\

O |=»

camera space

- —\
@ ™M
O
\& =

compute lighting

projection

Image space

Done 1n vertex shader

clip

map to screen

Fixed hardware function

Application Geometry -
The RASTERIZER

1n more detail

e Scan-conversion D

— Find out which pixels are inside the primitive

* Fragment shaders

+

— E.g. put textures on triangles

__= _ Use interpolated data over triangle B .

— and/or compute per-pixel lighting

» Z-buffering
— Make sure that what 1s visible from the camera
really 1s displayed

* Doublebuffering

The RASTERIZER Application Geometry -
Z-buffering

A triangle that 1s covered by a more closely
located triangle should not be visible

* Assume two equally large tris at different
depths

incorrect correct

a4 W M

Triangle 1 Triangle 2 Draw 1 then 2 Draw 2 then 1

The RASTERIZER Application Geometry -
Z-buffering

* Would be nice to avoid sorting...

* The Z-buffer (aka depth buffer) solves this

 Idea:
— Store z (depth) at each pixel

—

— When rasterizing a triangle, compute z at each
pixel on triangle

— Compare triangle’s z to Z-buffer z-value

— If triangle’s z 1s smaller, then replace Z-buffer and
color buffer

— Else do nothing
» Can render in any order

Painter's Algorithm

* Render polygons a back to front order so that polygons
behind others are simply painted over

oo

B behind A as seen by viewer Fill B then A

*Requires ordering of polygons

first

—O(n log n) calculation for ordering Le., : Sort all triangles and

render them back-to-front.

—Not every polygon is either in
front or behind all other polygons

z-Buffer Algorithm

» Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel found
so far

* As we render each polygon, compare the depth
of each pixel to depth in z buffer

* If less, place shade of pixel in color buffer and
update z buffer | 8 |,

FEEEEE

x>
N

The RASTERIZER Application Geometry -
double-bufttering

* The monitor displays one 1image at a time
* Top of screen — new 1mage

Bottom — old image

No control of split position

 And even worse, we often clear the screen
before generating a new 1mage
* A better solution 1s “double buffering”

— (Could mmstead keep track of rasterpos and
vblank).

Application Geometry -
The RASTERIZER

double-buftering

 Use two buffers: one front and one back
* The front buffer 1s displayed
 The back buffer is rendered to

 When new 1mage has been created in back
buffer, swap front and back

o)
-
o v
<
aw;
Q
—
-
Q
D)
P
P
0P

Swapping back/
front buffers

) 7y o4

S

Screen Tearing

Despite the gorgeous graphics seen in many of today's games, there are
still some highly distracting artifacts that appear in gameplay despite
our best efforts to suppress them. The most jarring of these is screen
tearing. Tearing 1s easily observed when the mouse 1s panned from
side to side. The result is that the screen appears to be torn between
multiple frames with an intense flickering effect. Tearing tends to be
aggravated when the framerate is high since a large number of frames
are in flight at a given time, causing multiple bands of tearing.

Vertical sync (V-Sync) is the traditional remedy to this problem, but as
many gamers know, V-Sync isn't without its problems. The main
problem with V-Sync 1s that when the framerate drops below the
monitor's refresh rate (typically 60 fps), the framerate drops
disproportionately. For example, dropping slightly below 60 fps results
in the framerate dropping to 30 fps. This happens because the monitor
refreshes at fixed internals (although an LCD doesn't have this
limitation, the GPU must treat 1t as a CRT to maintain backward
compatibility) and V-Sync forces the GPU to wait for the next refresh
before updating the screen with a new 1image. This results in notable
stuttering when the framerate dips below 60, even if just momentarily.

OpenGL

A Simple Program
Computer Graphics version of
“Hello World”

Generate a triangle on a solid background

Simple Application...

int main(int argc, char *argv[])

d
glutlnit(&argc, argv);

/* open window of size 512x512 with double buffering, RGB colors, and Z-
buffering */

glutlnitDisplayMode(GLUT DOUBLE | GLUT RGB | GLUT DEPTH);
glutlnitWindowSize(512,512);
glutCreateWindow("Test App");

/* the display function is called once when the gluMainLoop is called,
* but also each time the window has to be redrawn due to window

* changes (overlap, resize, etc). */

glutDisplayFunc(display); // Set the main redraw function

glutMainLoop(); /* start the program main loop */
return O;

void display(void)

{
glClearColor(0.2,0.2,0.8,1.0); // Set clear color - for background

glClear(GL _COLOR_BUFFER BIT | GL DEPTH BUFFER BIT); // Clears the color buffer and the z-buffer
int w = glutGet((GLenum)GLUT WINDOW_ WIDTH);

int h = glutGet((GLenum)GLUT WINDOW_HEIGHT);
glViewport(0, 0, w, h); /I Set viewport (OpenGL draws with this resolution)

glDisable(GL CULL FACE);
drawScene();

glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

static void drawScene(void)

{
// Shader Program

glUseProgramObjectARB(shaderProgram); // Set the shader program to use for this draw call
CHECK GL _ERROR();

glBindVertexArray(vertexArrayObject); // Tells which vertex arrays to use
CHECK GL _ERROR();

glDrawArrays(GL TRIANGLES, 0, 3); // Render the three first vertices as a triangle
CHECK GL _ERROR();

Infinitely extending viewing
frustum formed from
vigvver's eye through the
comers of the display screen
window.

Polygon in world

Display screen window
showing polygon's

rojection
Viewer's eye PRl

Shaders

// Vertex Shader
#version 130

In vec3 vertex;
in vec3 color;
out vec3 outColor;

uniform mat4 modelViewProjectionMatrix;

void main()

{

gl Position = modelViewProjectionMatrix*vec4(vertex,1);

outColor = color;

// Fragment Shader:
#version 130
in vec3 outColor;

out vec4 fragColor;

void main()

{

fragColor = vec4(outColor,1);

Demonstration of StmpleApp

Available on course homepage in Schedule.

— You need OpenGL 3.0 or later

. @] - www.cse.chalmers.se/edu/course/TDA & i) (@) (4]

Google YouTube Dictionary.com Eniro Personer Ulf Assarsson's Home Page Oversédtt Google Maps Insightly - Login > ' +

CHALMERS
Computer Engineering

Computer Science and Engineering - Chalmers Unwversity of Technology and Géteborg Unwersity

TDA361/DIT220 - Computer
graphics 2014 Ip2

Examiner: UIf Assarsson
uffe@chalmers.se

Home Schedule Literature Tutorials

SCHEDULE:

s Link to schedule.
= All lectures are at Campus Johanneberg

« MAP for lecture hall and tutorial rooms

Schedule for tutorials

The links for the Bonus-OH are located under the table. Bonus material is simply non-compulsory additional material that is fun or highlighting for
the interested reader. Unfortunately, that material only exists in Swedish. Non-swedish speakers can, if theywant, find related material in
OpenGL: A Primer.

(For non-Swedish speakers: translate the following sentence with e.g. google:)
Losenordsskyddade bonusfiler packas upp med |6senord "datorgrafik”.
Al self-studies below are non-compulsory

|Tutorial Deadlines

Lab 1+2+3, Thurs. week

Readings/Lasanvisningar

|Lecture

RTR chapter 2, ch 15.2.

Lab 4+5, Thurs. week 3.
Lab 6, Thurs. week 4.

Lecture 1 - Introduction
+ Pipeline and OpenGL ||Bonus: - the test application shown at lecture,

. Also, see with Lab "3D-World", Thurs.
week 7.
Self studies -
Languages (non- - Read briefly and only if you find it interesting
compulsory)

Summarized reading instructions for the Real-Time Rendering-book:

Ul b A T mhk b ™ b AN

Cool application

&2 Test App

BONUS

Simple Application...

#ifdef WIN32
#include <windows.h>
#endif

#include <GL/glut.h> // This also includes gl.h

static void drawScene(void)

! glColor3f(1,1,1); OLD WAY

glBegin(GL POLYGON);
glVertex31(4.0, 0, 4.0);
glVertex3£(4.0, 0,-4.0);
glVertex31(-4.0, 0,-4.0);

glEnd(); Usually this and next 2
J slides are put 1n the
same file main.cpp

BONUS

Simple Application

void display(void)

{
glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color
glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT); // Clears the color buffer

and the z-buffer
int w = glutGet((GLenum)GLUT WINDOW_WIDTH);

int h = glutGet((GLenum)GLUT WINDOW_ HEIGHT);
glViewport(0, 0, w, h); /I Set viewport O I D WA i
glMatrixMode(GL PROJECTION); // Set projection matrix

glLoadldentity();
gluPerspective(45.0,w/h, 0.2, 10000.0); // FOV, aspect ratio, near, far

glMatrixMode(GL MODELVIEW); // Set modelview matrix

glLoadldentity();

gluLookAt(10, 10, 10, // look from
0, 0,0, // look at
0,0, 1); // up vector

drawScene();

glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

BONUS

Changing Color per Vertex

static void drawScene(void)

d

// glColor3f(1,1,1); OLD WAY

glBegin(GL_POLYGON);
glColor31(1,0,0);
glVertex3f(4.0, 0, 4.0);

glColor31(0,1,0);
glVertex31(4.0, 0,-4.0);

glColor31(0,0,1);
glVertex31(-4.0, 0,-4.0);
glEnd();

h

Repetition

* What 1s important:

— Understand the Application-, Geometry- and
Rasterization Stage

