
Security Quiz

 Connect to kahoot.it

 Enter Pin: xxxx (will come when I start the quiz)

 FAQ

 Questions appear on full screen

 You press the answer (based on color, symbol) on your device

 The faster you press the correct answer, the more points

 Sometimes, several answers may be correct

 Good luck!

UNIX security

 Ulf Larson (modified by Erland Jonsson/Magnus Almgren)

 Computer security group

 Dept. of Computer Science and Engineering

 Chalmers University of Technology, Sweden

Outline

• UNIX security ideas

• Users and groups

• File protection

• Setting temporary privileges
– Permission bits

– Program language components

• Examples

UNIX security ideas

• Memory protection for processes
– Processes have own virtual address space

– Communication with hardware is done through the operating
system

• Files are protected between users
– The “everything is a file” concept implies that same mechanisms

apply for all objects

• Maintenance is carried out by a “reliable” system
administrator
– Also known as root, or superuser

Users and groups

• A user name is internally represented by a user identifier, or UID

– Special user names are used for system functions, such as root,
guest and apache

– UNIX id command show UID

– UIDs are stored in file /etc/passwd with username, preferred shell

– Your system privileges depends on UID

• Group id, or GID is used to identify groups of users

– UNIX groups <username> shows the groups that <username>
belongs to

Users and groups (2)

• /etc/passwd file entry for user root:

– root:AAencryptedpw:0:0:root:/root:/bin/bash

• Special user names

– UNIX comes with special users for administrative purposes: the
superuser, or root.

• As root you can log users out and in, shutdown the computer, start
and run network services, run all programs, view all files for all
users

• As root: most security restrictions are bypassed.

• “Hacking root” provides an attacker with unrestricted privileges to
a system…BAD!

Users and groups (3)

• Sometimes a user need to perform actions as another user
– UNIX su command (substitute user / switch user)

• User enter username and password for account. User becomes the
other user until log out

– UNIX sudo command
• Run a single command usually limited for root (perm. in sudoers file)

• Users enter their own password (typically) and the access is logged.

– Executable files with SUID bit set

• Operating system lets user perform the desired operation with the
privileges of the owner of the object. When execution finished,
user assumes ordinary privileges.

– Using the setuid() function call

Users and groups (4)

• Real and effective UIDs
– Each user has at any given point in time two

(sometimes three) different UIDs

– Real UID, or RUID is assigned to user when logging in.
Used to identify unique user and remain unchanged

– Effective UID, or EUID is initially same as RUID, but
changes to owner of file during execution of files with
the SUID flag set (SUID files).
EUID changes back to RUID after execution

File Protection

• UNIX file system controls which users can access
what items and how

• Simply put: Everything visible to a user can be
represented as a “file”

– Each “file” has at least one name, an owner and access
rights

– Running UNIX ls command reveals information about
files and directories

File Protection (2): Example

>>ls –l /home/ulf/example.txt

-rw-r--r– 1 ulf ulfgrp 1024 Sep 1 11:00 example.txt

-
rw-r--r--
1
ulf
ulfgrp
1024
Sep 1 11:00
example.txt

file type
file permissions (owner, group, other)
names of the file
owner
group
file size
modification date and time
name

File Protection (3)

• File permissions indicate who that can do what on a specified
object.

• 9 characters grouped in 3 classes and 3 kinds of permissions
• Classes:

Owner = The file’s owner
Group = Users in the file’s group
Other = Everybody else (except the superuser)

• Kinds:
r = Class has read access to file,
w = Class has write access to file,
x = Class has execute access to file

File Protection (4)

• Example:

– Who can access file a.txt, and in what way:

 - rwx r-- --- usrOne grpTwo a.txt

Answer:
usrOne
grpTwo
other has

(

Answer:
usrOne has read, write and execute access to a.txt
grpTwo has read access to a.txt
other has no access to a.txt

(superuser has full access to a.txt)

File Protection (5)

• UNIX chmod command is used to change file access
permissions – 2 different modes

– Octal file permissions

• Four octal numbers are used as follows:

0744

SUID/SGID owner group other

When calculating: r adds 4, w adds 2 and x adds 1 to total.

Example: What is the result (in octal) of setting r,w,x for owner,
r for group and r for other for non SUID file?

File Protection (6)

– Combining kinds r, w and x and s with ‘+’, ‘=‘ and ‘-’ and classes
u, g and o

• To add write permissions for group: g+w

• To remove read permissions for other: o-r

• To set read access for user: u=r

• Example:
Assuming file.txt has permissions 0744, the following two
operations achieve the same result

• >> chmod 0764 file.txt

• >> chmod g+w file.txt

Setting temporary permissions: SUID
program

• A SUID program is a program for which the “s” bit is set

• Used to grant temporary privileges during execution to unprivileged
user
– Example: change the /etc/passwd file

– What programs are SUID on your system, run
 find / -perm -4000 -print

• There are two main methods for changing the s flag through the use
of permission bits and chmod

– SUID bits in file permission.
• SUID = chmod 4755 file.txt, or chmod u+s file

– Result: rws r-x r-x

Setting temporary permissions: SUID
example

• Impact on RUID and EUID from the use of SUID

– Repeat slide “Users and Groups (4)”

– During execution of a SUID file, EUID changes to that of
the owner of the SUID file. The RUID does not change.

Setting temporary permissions:
setuid fcn call

• The setuid() function call
• >>man setuid (for help – used in Lab 1)
• Changes the UID of the user to that of the argument of the

function call
• Non-root users can only setuid to their own UID.
• If the caller of the setuid() function is non-root, then EUID

is changed.
• If the caller of the setuid() function is root, then RUID and

EUID is changed. This is used by root
to downgrade privileges for a user after the user has
logged in.

Example: UNIX login

init

getty

fork()

login

 user1 enters user name

 user1 enters password
 login encrypts password
 compare the encrypted password with
 that of user1’s row in /etc/passwd
 the UID and the preferred shell found
 privilege downgrade via setuid(user1 UID)

shell

For login proc:
RUID=EUID=0

For user1 shell:
RUID=EUID=
user1 UID

Summarizing example 1

• Example 1

– User Alice logs in to run the SUID file
/home/ulf/becomeMe.exe owned by
ulf (UID 12345)
>>ls –l becomeMe.exe

 rwsr-xr-x ulf ce becomeMe.exe

If user Alice has UID=22448, what are the RUID and EUID
before, during and after execution of the file becomeMe.exe?

Summarizing example (2)

• Example 2

– User Alice logs in to run the file
/home/ulf/dontbecomeMe.exe
owned by ulf (UID 12345)
>>ls –l dontbecomeMe.exe

rwxr-xr-x ulf ce dontbecomeMe.exe

If Alice has the UID 22448, what are the RUID and EUID
before, during and after execution of file dontbecomeMe.exe?

Solutions to examples

• Example 1
– Before RUID=EUID=22448

– During RUID=22448, EUID=12345

– After RUID=EUID=22448

• Example 2
– Before RUID=EUID=22448

– During RUID=EUID=22448

– After RUID=EUID=22448

