GPU Programming

With thanks to Manuel Chakravartty for some borrowed slides
GPUs change the game
Gaming drives development

GPGPU benefits

General Purpose programming on GPU

GPUs used to be very graphics-specific (shaders and all that)

The pipeline is becoming more and more general purpose even in the gaming GPUs, and there are also special GPUs for GPGPU (more expensive, double precision).

Typical GPGPU users are from finance, sciences needing simulation, bioinformatics etc.

See http://gpgpu.org/
Processing power

Theoretical GFLOP/s

- NVIDIA GPU Single Precision
- NVIDIA GPU Double Precision
- Intel CPU Double Precision
- Intel CPU Single Precision

GeForce 780 Ti
GeForce GTX TITAN
GeForce GTX 680
GeForce GTX 580
GeForce GTX 480
GeForce GTX 280
Tesla K20X
Tesla M2090
Tesla C2050
Sandy Bridge
Ivy Bridge
Westmere
Bloomfield
Harpertown
GeForce 7800 GTX
GeForce 6800 Ultra
GeForce 8800 GTX
GeForce 7800 GTX
Pentium 4
Apr-01
Sep-02
Jan-04
May-05
Oct-06
Feb-08
Jul-09
Nov-10
Apr-12
Aug-13
Dec-14

Bandwidth to memory
Transistors used differently

Need a new programming model

SM = multiprocessor with many small cores/ALUs. Program should run both on wimpy GPU and on a hefty one. MANY threads need to be launched onto the GPU.
Detected 1 CUDA Capable device(s)

Device 0: "GeForce GT 650M"
 CUDA Driver Version / Runtime Version 5.5 / 5.5
 CUDA Capability Major/Minor version number: 3.0
 Total amount of global memory: 1024 MBytes (1073414144 bytes)
 (2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores
 GPU Clock rate: 900 MHz (0.90 GHz)
 Memory Clock rate: 2508 Mhz
 Memory Bus Width: 128-bit

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

...
C Program Sequential Execution

Serial code

Parallel kernel Kernel0<<<>>>()

Serial code

Parallel kernel Kernel1<<<>>>()

Device

Grid 0

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Host

Device

Grid 1

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Block (0, 2) Block (1, 2)
CUDA C

Gives the user fine control over all of this

User must be aware of the memory hierarchy and of costs of memory access patterns

CUDA programming is great fun (but not the subject of this course)!

OpenCL is a sort of platform-independent CUDA
Raising the level of abstraction

Imperative

Thrust library (C++ template lib. Similar to STL)

CUB library (reusable software components for every layer of the CUDA hierarchy. Very cool!)

PyCUDA, Copperhead and many more

Sestoft mentioned a commercial F# to CUDA compiler (from QuantAlea)!

Loo.py is seriously cool!
Raising the level of abstraction

Functional
Accelerate
Obsidian

(both EDSLs in Haskell generating CUDA)

Nova (U. Edinburgh and NVIDIA, skeleton-based like Accelerate, IR looks generally interesting)

and more
Accelerating Haskell Array Codes with Multicore GPUs

Manuel M. T. Chakravarty† Gabriele Keller† Sean Lee‡† Trevor L. McDonell† Vinod Grover‡

†University of New South Wales, Australia ‡NVIDIA Corporation, USA
{chak,keller,seanl,tmcdonell}@cse.unsw.edu.au {selee,vgrover}@nvidia.com

Abstract

Current GPUs are massively parallel multicore processors optimised for workloads with a large degree of SIMD parallelism. Good performance requires highly idiomatic programs, whose development is work intensive and requires expert knowledge.

To raise the level of abstraction, we propose a domain-specific high-level language of array computations that captures appropriate idioms in the form of collective array operations. We embed this purely functional array language in Haskell with an online code generator for NVIDIA’s CUDA GPGPU programming environment. We regard the embedded language’s collective array operations as algorithmic skeletons; our code generator instantiates CUDA implementations of those skeletons to execute embedded array programs.

This paper outlines our embedding in Haskell, details the design and implementation of the dynamic code generator, and reports on initial benchmark results. These results suggest that we can compete with moderately optimised native CUDA code, while enabling much simpler source programs.

In summary, our main contributions are the following:

1. An embedded language, Accelerate, that captures appropriate idioms in the form of parameterised, collective array operations.
2. A code generator based on CUDA skeletons of collective array operations that are instantiated at runtime.
3. An execution engine that caches previously compiled skeleton instantiations and by parallelising code generation, host-to-device data transfers, and GPU kernel loading.

Our work is in that same spirit: we propose a domain-specific high-level language of array computations, called Accelerate, that captures appropriate idioms in the form of parameterised, collective array operations. Our choice of operations was informed by the scan-vector model [11], which is suitable for a wide range of algorithms, and of which Sengupta et al. demonstrated that these operations can be efficiently implemented on modern GPUs [30].

We regard Accelerate’s collective array operations as algorithmic skeletons that capture a range of GPU programming idioms. Our dynamic code generator instantiates CUDA implementations of these skeletons to implement embedded array programs. Dynamic code generation can exploit runtime information to optimise GPU code and enables on-the-fly generation of embedded array programs by the host program. Our code generator minimises the overhead of dynamic code generation by caching binaries of previously compiled skeleton instantiations and by parallelising code generation, host-to-device data transfers, and GPU kernel loading and configuration.

In contrast to our earlier prototype of an embedded language...
Accelerate overall structure

Figure 2. Overall structure of Data.Array.Accelerate.

(from the DAMP’11 paper)
Accelerate back-ends

<table>
<thead>
<tr>
<th>back-end</th>
<th>addresses</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpreter</td>
<td>testing</td>
<td>works</td>
</tr>
<tr>
<td>CUDA</td>
<td>Nvidia graphic cards</td>
<td>works</td>
</tr>
<tr>
<td>CL</td>
<td>any graphic card through OpenCL</td>
<td>prototype</td>
</tr>
<tr>
<td>LLVM</td>
<td>any processor through LLVM</td>
<td>prototype</td>
</tr>
<tr>
<td>Repa</td>
<td>any processor in plain Haskell</td>
<td>stalled</td>
</tr>
<tr>
<td>FPGA</td>
<td>programmable hardware</td>
<td>fictional</td>
</tr>
</tbody>
</table>
Accelerate

- Accelerate is a *domain-specific language* for GPU programming.

- A running Haskell/Accelerate program is converted to CUDA code.
- The CUDA code is compiled by NVidia's compiler and loaded onto the GPU, then executed.
- Results of the GPU computation are returned.

- This process may happen several times during the program's execution.
- The CUDA code isn't compiled every time — code fragments are cached and re-used.

User’s view (slide by S. Marlow, with thanks)
Embedded code-generating DSL

You write a Haskell program that generates CUDA programs

But the program should look very like a Haskell program (even though it is actually producing ASTs)

(see Lava)
Repa shape-polymorphic arrays reappear

data Z = Z — rank-0

data tail :: head = tail :: head — increase rank by 1

type DIM0 = Z
type DIM1 = DIM0 :: Int
type DIM2 = DIM1 :: Int
type DIM3 = DIM2 :: Int ⟨and so on⟩

type Array DIM0 e = Scalar e
type Array DIM1 e = Vector e
Dot product in Haskell

dotp_list :: [Float] -> [Float] -> Float
dotp_list xs ys = foldl (+) 0 (zipWith (*) xs ys)
Dot product in Accelerate

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Assume an associative operator that is folded in a tree shape
Dot product in Accelerate

dotp :: Vector Float -> Vector Float
 -> Acc (Scalar Float)
dotp xs ys = let xs' = use xs
 ys' = use ys
 in
 fold (+) 0 (zipWith (*) xs' ys')
Moving an array (literally)

from the Haskell world to the Accelerate world

use :: (Shape sh, Elt e) => Array sh e -> Acc (Array sh e)

Implies a host to device transfer
Moving an array (literally)

from the Haskell world to the Accelerate world

use :: (Shape sh, Elt e) => Array sh e -> Acc (Array sh e)

Computations in Acc are run on the device

They work on arrays and tuples of arrays.

Remember we are talking about FLAT data parallelism

However, arrays of tuples are allowed (and get converted to tuples of arrays internally)

Plain Haskell code is run on the host
What happens with dot product?

dotp :: Vector Float -> Vector Float -> Acc (Scalar Float)
dotp xs ys = let xs’ = use xs
 ys’ = use ys
 in
 fold (+) 0 (zipWith (*) xs’ ys’)

This results (in the original Accelerate) in 2 kernels, one for fold and one for zipWith
Collective array operations = kernels

zipWith
 :: (Shape sh, Elt a, Elt b, Elt c) =>
 (Exp a -> Exp b -> Exp c)
 -> Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c)
Collective array operations = kernels

zipWith :: (Shape sh, Elt a, Elt b, Elt c) => (Exp a -> Exp b -> Exp c) -> Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c)

- Acc a : an array computation delivering an a
 - a is typically an instance of class Arrays

- Exp a : a scalar computation delivering an a
 - a is typically an instance of class Elt
map
 :: (Shape sh, Elt a, Elt b) =>
 (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)
Collective array operations = kernels

fold :: (Shape sh, Elt a) =>
 (Exp a -> Exp a -> Exp a)
 -> Exp a -> Acc (Array (sh :: Int) a) -> Acc (Array sh a)

Reduces the shape by one dimension
to run on the GPU

Prelude A I> import Data.Array.Accelerate.CUDA as C

Prelude A I C> C.run $ A.map (+1) (use arr)
Loading package syb-0.4.0 ... linking ... done.
Loading package filepath-1.3.0.1 ... linking ... done.
Loading package old-locale-1.0.0.5 ... linking ... done.
Loading package time-1.4.0.1 ... linking ... done.
Loading package unix-2.6.0.1 ... linking ... done.
...

Array (Z :: 3 :: 5)
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
Prelude A I C> C.run $ A.map (+1) (use arr)
Array (Z :: 3 :: 5)
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Second attempt much faster. Kernels are memoised.
map (\x \rightarrow x + 1) arr

How to implement the skeletons...

Slides by M. Chakravarty, with thanks
map (\x \rightarrow x + 1) \text{arr}

Reify AST

\text{Map (Lam (Add `PrimApp` (ZeroIdx, Const 1))) \text{arr}}
map (\x -> x + 1) arr

Reify AST

Map (Lam (Add `PrimApp` (ZeroIdx, Const 1))) arr

Optimise
map (\x -> x + 1) arr

Reify AST

Map (Lam (Add `PrimApp` (ZeroIdx, Const 1))) arr

Optimise

Skeleton instantiation

__global__ void kernel (float *arr, int n)
{...}
map (\x \rightarrow x + 1) arr

Reify AST

Map (Lam (Add `PrimApp` (ZeroIdx, Const 1))) arr

Optimise

Skeleton instantiation

__global__ void kernel (float *arr, int n)
{
...

CUDA compiler
map \(\langle x \rightarrow x + 1 \rangle \) arr

Reify AST

Map \(\langle \text{Lam} \ (\text{Add} \ \text{PrimApp} \ \langle \text{ZeroIdx}, \text{Const 1} \rangle) \rangle \) arr

Optimise

Skeleton instantiation

__global__ void kernel (float *arr, int n)
{
...

CUDA compiler

Call
CUTranslSkel "map" [cunit]

#include <accelerate_cuda.h>

extern "C" __global__ void map ($params:argIn, $params:argOut) {
 const int shapeSize = size(shOut);
 const int gridSize = $exp:(gridSize dev);
 int ix;

 for (ix = $exp:(threadIdx dev) ; ix < shapeSize ; ix += gridSize) {
 $items:(dce x .=. get ix)
 $items:(setOut "ix" .=. f x)
 }
}
} |]

where ...
Combinators as skeletons

Skeleton = code template with holes
Hand tuned

Uses Mainland’s CUDA quasi-quoter

Antiquotes such as $\text{params}:$ are the holes
Performance (DAMP’11 paper)

Figure 3. Kernel execution time for a dot product.
Performance (DAMP’11 paper)

Figure 3. Kernel execution time for a dot product.

- Pretty good
- But reflecting the fact that dotp in Accelerate needs 2 kernels launches
Conclusion (DAMP’11 paper)

Need to tackle fusion of adjacent kernels

Sharing is also an issue

One should write programs to take advantage of kernel memoisation (to reduce kernel generation time)
Optimising Purely Functional GPU Programs

Trevor L. McDonell Manuel M. T. Chakravarty Gabriele Keller Ben Lippmeier
University of New South Wales, Australia
{tmcdonell,chak,keller,benl}@cse.unsw.edu.au

Abstract
Purely functional, embedded array programs are a good match for SIMD hardware, such as GPUs. However, the naive compilation of such programs quickly leads to both code explosion and an excessive use of intermediate data structures. The resulting slowdown is not acceptable on target hardware that is usually chosen to achieve high performance.

In this paper, we discuss two optimisation techniques, sharing recovery and array fusion, that tackle code explosion and eliminate superfluous intermediate structures. Both techniques are well known from other contexts, but they present unique challenges for an embedded language compiled for execution on a GPU. We present novel methods for implementing sharing recovery and array fusion, and demonstrate their effectiveness on a set of benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Languages]: Language Classification—Applicative (functional) languages; Concurrent, distributed, and parallel languages

Keywords Arrays; Data parallelism; Embedded language; Dynamic compilation; GPGPU; Haskell; Sharing recovery; Array fusion

1. Introduction
Recent work on stream fusion [12], the vector package [23], and the parallel array library Repa [17, 19, 20] has demonstrated that (1) the performance of purely functional array code in Haskell can be competitive with that of imperative programs and that (2) purely functional array code lends itself to an efficient parallel implementation on control-parallel multicore CPUs.

programs consisting of multiple kernels the intermediate data structures must be shuffled back and forth across the CPU-GPU bus.

We recently presented Accelerate, an EDSL and skeleton-based code generator targeting the CUDA GPU development environment [8]. In the present paper, we present novel methods for optimising the code using sharing recovery and array fusion.

Sharing recovery for embedded languages recovers the sharing of let-bound expressions that would otherwise be lost due to the embedding. Without sharing recovery, the value of a let-bound expression is recomputed for every use of the bound variable. In contrast to prior work [14] that decomposes expression trees into graphs and fails to be type preserving, our novel algorithm preserves both the tree structure and typing of a deeply embedded language. This enables our runtime compiler to be similarly type preserving and simplifies the backend by operating on a tree-based intermediate language.

Array fusion eliminates the intermediate values and additional GPU kernels that would otherwise be needed when successive bulk operators are applied to an array. Existing methods such as foldr/build fusion [15] and stream fusion [12] are not applicable to our setting as they produce tail-recursive loops, rather than the GPU kernels we need for Accelerate. The NDP2GPU system of [4] does produce fused GPU kernels, but is limited to simple map/map fusion. We present a fusion method partly inspired by Repa’s delayed arrays [17] that fuses more general producers and consumers, while retaining the combinator based program representation that is essential for GPU code generation using skeletons.

With these techniques, we provide a high-level programming model that supports shape-polymorphic maps, generators, reductions, permutation and stencil-based operations, while maintaining performance that often approaches hand-written CUDA code.
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Skeleton #1

Skeleton #2

Intermediate array

Extra traversal
Combined skeleton

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)
“Operations where each element of the result array depends on at most one element of each input array. Multiple elements of the output array may depend on a single input array element, but all output elements can be computed independently. We refer to these operations as producers.”
“Operations where each element of the result array depends on at most one element of each input array. Multiple elements of the output array may depend on a single input array element, but all output elements can be computed independently. We refer to these operations as producers.”
“Operations where each element of the result array depends on multiple elements of the input array. We call these functions consumers, in spite of the fact that they also produce an array.”
The basic idea behind the representation of producer arrays in Accelerate is well known: simply represent an array by its shape and a function mapping indices to their corresponding values. We previously used it successfully to optimise purely functional array programs in Repa [17], but it was also used by others [11].

However, there are at least two reasons why it is not always beneficial to represent all array terms uniformly as functions. One is that represents a scalar function from shape to element type. The type means that both and so they can always be expressed as scalar functions and embedded into consumers in the second phase of fusion. The other is a well known problem in Repa. The other so that a delayed-by-default representation can not lead to arbitrary sharing.

The nature of Accelerate means that we can compute accurate cost estimates work; we plan to change this in future work as the restricted nature of Accelerate output arrays, we might wish to use the output to each element produced by the reduction be-
to the application of an index and/or value space transformation to the argument array. The type encodes a special case of the more general function which maps indices to elements. The third constructor, represents a scalar function from shape to element type. The type.

We have three constructors:

- **map**: $(\text{Exp } a \to \text{Exp } b) \to \text{Acc } \text{Array } \text{sh } a \to \text{Acc } \text{Array } \text{sh } b$
- **zipWith**: $(\text{Exp } a \to \text{Exp } b \to \text{Exp } c) \to \text{Acc } \text{Array } \text{sh } a \to \text{Acc } \text{Array } \text{sh } b \to \text{Acc } \text{Array } \text{sh } c$
- **backpermute**: $\text{Exp } \text{sh}' \to (\text{Exp } \text{sh}' \to \text{Exp } \text{sh}) \to \text{Acc } \text{Array } \text{sh } a \to \text{Acc } \text{Array } \text{sh } e$
- **replicate**: $\text{Slice } \text{slix }\to \text{Exp } \text{slix }\to \text{Acc } \text{Array } \text{SliceShape } \text{slix }\text{ e }\to \text{Acc } \text{Array } \text{FullShape } \text{slix }\text{ e}$
- **slice**: $\text{Slice } \text{slix }\to \text{Acc } \text{Array } \text{FullShape } \text{slix }\text{ e }\to \text{Acc } \text{Array } \text{SliceShape } \text{slix }\text{ e}$
- **generate**: $\text{Exp } \text{sh }\to (\text{Exp } \text{sh }\to \text{Exp } \text{a}) \to \text{Acc } \text{Array } \text{FullShape } \text{sh }\text{ e}$

- **fold**: $(\text{Exp } a \to \text{Exp } a \to \text{Exp } a) \to \text{Exp } \text{a }\to \text{Acc } \text{Array } \text{sh } a$
- **scan{l,r]**: $(\text{Exp } a \to \text{Exp } a \to \text{Exp } a) \to \text{Exp } \text{a }\to \text{Acc } \text{Vector } \text{a}$
- **permute**: $(\text{Exp } a \to \text{Exp } a \to \text{Exp } a) \to \text{Acc } \text{Array } \text{sh } a \to \text{Exp } \text{sh }\to \text{Exp } \text{sh}' \to \text{Acc } \text{Array } \text{sh } a \to \text{Acc } \text{Array } \text{sh } c$
- **stencil**: $\text{Stencil } \text{sh } a \text{ stencil }\to (\text{stencil }\to \text{Stencil } \text{sh } a \text{ stencil }\to \text{stencil }\to \text{Stencil } \text{sh } a \text{ stencil }) \to \text{Acc } \text{Array } \text{sh } a \to \text{Acc } \text{Array } \text{sh } b$

Note the NESL influence on programming idioms!!
Fusing networks of skeletons

Networks consist of producers (e.g., generate, map) and consumers (e.g., fold). First, fuse producers.
Fusing networks of skeletons

Phase 1: producer/producer fusion

Phase 1: producer/producer fusion

This is the easy case
Phase 2: consumer/producer fusion

Fuse a producer followed by a consumer into the consumer
Happens during code generation. Specialise consumer skeleton with producer code
Phase 2: consumer/producer fusion

Producer consumer pairs were not fused at time of writing of the ICFP’13 paper
Fusion of skeletons
...reduces the abstraction penalty

Code generation idioms \textit{vary} from high-level combinators

\textbf{Smart constructors} combine producers

\textbf{Instantiate} consumer skeletons with producer code
Dot Product

The graph shows the run time (ms) against the number of elements (millions) for different implementations of the dot product:

- Data.Vector
- Repa -N8
- NDP2GPU
- Accelerate -fusion
- CUBLAS

* C (red) is on one CPU core (Xenon E5405 CPU @ 2 GHz, 64-bit)
* Repa (blue) is on 7 CPU cores (two quad-core Xenon E5405 CPUs @ 2 GHz, 64-bit)
* Accelerate (green) is on a Tesla T10 processor (240 cores @ 1.3 GHz)
Sharing recovery

```
blackscholes :: Vector (Float, Float, Float)
    -> Acc (Vector (Float, Float))
blackscholes = map callput . use
where
    callput x =
        let (price, strike, years) = unlift x
            r = constant riskfree
            v = constant volatility
            v_sqrtT = v * sqrt years
            d1 = (log (price / strike) +
                (r + 0.5 * v * v) * years) / v_sqrtT
            d2 = d1 - v_sqrtT
            cnd d = let poly = horner coeff
                    in
                    cnd' d
            cndD1 = cnd d1
            cndD2 = cnd d2
            x_expRT = strike * exp (-r * years)
        in
            lift (price * cndD1 - x_expRT * cndD2
                , x_expRT * (1.0 - cndD2) - price * (1.0 - cndD1))
                * rsqrt2pi * exp (-0.5*d*d) * poly k
```

“The function callput includes a significant amount of sharing: the helper functions cnd’, and hence also horner, are used twice —for d1 and d2— and its argument d is used multiple times in the body. Our embedded implementation of Accelerate reifies the abstract syntax of the (deeply) embedded language in Haskell. Consequently, each occurrence of a let-bound variable in the source program creates a separate unfolding of the bound expression in the compiled code.”
Summary

ICFP’13 paper introduces a new way of doing sharing recovery (a perennial problem in EDSLs)

It also introduces novel ways to fuse functions on arrays

Performance is considerably improved

This is a great way to do GPU programming without bothering too much about how GPUs make life difficult
Read Chap. 6 of Marlow book

Look at accelerate-examples
Break?
GPU programming in Obsidian

Ack: Obsidian is developed by Joel Svensson.

github.com/svenssonjoel/obsidian
checkout master-dev for latest version
Accelerate

Get acceleration from your GPU by writing familiar combinators

Hand tuned skeleton templates

Compiler cleverness to fuse and memoise the resulting kernels

Leaves a gap between the programmer and the GPU (which most people want)
Obsidian

Can we bring FP benefits to GPU programming, without giving up control of low level details?

This is an instance of the research questions in our big SSF project called Resource Aware Functional Programming
(You might have seen a lecture about Feldspar in some other course.)
Obsidian

- mid-level programming of CUDA, OpenCL and sequential C on CPU
- explicit control of parallelism arrangement in Threads, Thread blocks, Grid
- supports batched monadic/imperative programming

my applications:
- Cholesky decomposition for band-matrices: based on mapAccum (not available in Accelerate)
- pivot vector to permutation array conversion: requires mutable manipulation (not complete in Obsidian)
- call Obsidian code from Accelerate
Assumptions

To get really good performance from a GPU, one must control

- use of memory
- memory access patterns
- synchronisation points
- where the boundaries of kernels are
- patterns of sequential code (control of task size)

Vital to be able to experiment with variants on a kernel easily
Assumptions

To get really good performance from a GPU, one must control

- use of memory
- memory access patterns
- where the boundaries of kernels are

Vital to be able to experiment with variants on a kernel easily

We aim to give the programmer this control

We avoid compiler cleverness!

Cost model should be entirely transparent
Building blocks

Embedded DSL in Haskell

Pull and push arrays

Use of types to allow “hierarchy-polymorphic” functions (Thread, Warp, Block, Grid)

A form of virtualisation to remove arbitrary limits like max #threads per block

Memory layout is taken care of (statically)
Building blocks

Embedded DSL in Haskell

Pull and push arrays

Use of types to allow "hierarchy-polymorphic" functions like max

Delayed arrays
See Pan by Elliot http://conal.net/pan/
Or even
Compilation and Delayed Evaluation in APL, Guibas and Wyatt, POPL'78
Building blocks

Embedded DSL in Haskell

Pull and push arrays

Use of types for functions (The)

A form of virtual like max #threads

A new array representation due to Claessen will come back to this
CUDA programming model

Single Program Multiple Threads

Kernel = Function run N times by N threads

Hierarchical thread groups

Associated memory hierarchy
The flow of kernel execution

Initialize/acquire the device (GPU)
Allocate memory on the device (GPU)
Copy data from host (CPU) to device (GPU)
Execute the kernel on the device (GPU)
Copy result from device (GPU) to host (CPU)
Deallocate memory on device (GPU)
Release device (GPU)
CUDA kernel

Executed by an array of Threads

Each thread has an ID that is used to compute memory addresses and make control decisions

```c
float x = input[threadID];
float y = func(x);
output[threadID] = y;
```
Blocks

Threads within a block communicate via shared memory and barrier synchronisation (\(__\text{syncthreads}()\));

Threads in different blocks cannot cooperate
Hierarchy

<table>
<thead>
<tr>
<th>Level</th>
<th>Parallelism</th>
<th>Shared Memory</th>
<th>Thread synchronisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Warp</td>
<td>Yes</td>
<td>Yes</td>
<td>Lock-step execution</td>
</tr>
<tr>
<td>Block</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Grid</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Memory access patterns

Some patterns of global memory access can be **coalesced**. Others cannot. Missing out on coalescing ruins performance!

Global memory works best when adjacent threads access a contiguous block

For shared memory, successive 32 bit words are in different banks. Multiple simultaneous access to a bank = **bank conflict** = another way to ruin performance. Conflicting accesses are serialised.
Thread ID is usually built from

- `blockIdx` Block index within a grid `uint3`
- `blockDim` Dimension of the block `dim3`
- `threadIdx` Thread index within a block `uint3`

`gridDim` gives the dimensions of the grid (the number of blocks in each dimension)

We’ll use linear blocks and grids (easier to think about)

For more info about CUDA see https://developer.nvidia.com/gpu-computing-webinars esp. the 2010 intro webinars
First CUDA kernel

```c
__global__ void inc(float *, float *r){
    unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
    r[ix] = i[ix]+1;
}
```
Host code

#include <stdio.h>
#include <cuda.h>
#define BLOCK_SIZE 256
#define BLOCKS 1024
#define N (BLOCKS * BLOCK_SIZE)

int main(){
 float *v, *r;
 float *dv, *dr;

 v = (float*)malloc(N*sizeof(float));
 r = (float*)malloc(N*sizeof(float));

 //generate input data
 for (int i = 0; i < N; ++i) {
 v[i] = (float)(rand () % 1000) / 1000.0;
 }

 /* Continues on next slide */
cudaMalloc((void**)&dv, sizeof(float) * N);
cudaMalloc((void**)&dr, sizeof(float) * N);

cudaMemcpy(dv, v, sizeof(float) * N, cudaMemcpyHostToDevice);

inc<<<BLOCKS, BLOCK_SIZE,0>>>(dv,dr);

cudaMemcpy(r, dr, sizeof(float) * N, cudaMemcpyDeviceToHost);

cudaFree(dv);
cudaFree(dr);

for (int i = 0; i < N; ++i) {
 printf("%f ", r[i]);
}
printf("\n");

free(v);
free(r);
}
incLocal arr = fmap (+1) arr

Building an AST just like in Accelerate
Obsidian Pull arrays

incLocal :: Pull Word32 EWord32 -> Pull Word32 EWord32
incLocal arr = fmap (+1) arr

Pull size element-type

Static Word32 = Haskell value known at compile time
Dynamic EWord32 = Exp Word32 (an expression tree)

Immutable
Obsidian Pull arrays

data Pull s a = Pull {pullLen :: s, pullFun :: EWord32 -> a}

(length and function from index to value, the read-function, see Elliott’s Pan, also called delayed arrays)

type SPull = Pull Word32
type DPull = Pull EWord32

A consumer of a pull array needs to iterate over those indices of the array it is interested in and apply the pull array function at each of them.
Fusion for free

\[\text{fmap } f \ (\text{Pull } n \ \text{ixf}) = \text{Pull } n \ (f \ . \ \text{ixf}) \]
incLocal arr = fmap (+1) arr

This says what the computation should do

How do we lay it out on the GPU?
incPar :: Pull EWord32 EWord32 \rightarrow \textbf{Push Block} EWord32 EWord32
incPar = \text{push . incLocal}

\text{push} \quad \text{converts a pull array to a push array and pins it to a particular part of the GPU hierarchy}

\text{No cost associated with pull to push conv.}

\text{Key to getting fine control over generated code}
GPU Hierarchy in types

data Thread

data Step t

type Warp = Step Thread
type Block = Step Warp
type Grid = Step Block
-- | Type level less-than-or-equal test.
type family LessThanOrEqual a b where
 LessThanOrEqual Thread Thread = True
 LessThanOrEqual Thread (Step m) = True
 LessThanOrEqual (Step n) (Step m) = LessThanOrEqual n m
 LessThanOrEqual x y = False

type a <= b = (LessThanOrEqual a b ~ True)
Program data type

data Program t a where

 Identifier :: Program t Identifier

 Assign :: Scalar a
 => Name
 -> [Exp Word32]
 -> (Exp a)
 -> Program Thread ()

...

 -- use threads along one level
 -- Thread, Warp, Block.
 ForAll :: (t *<=* Block) => EWord32
 -> (EWord32 -> Program Thread ())
 -> Program t ()

...
Program data type

seqFor :: EWord32 -> (EWord32 -> Program t ()) -> Program t ()

...

Sync :: (t *<=* Block) => Program t ()

...
Program data type

...

Return :: a -> Program t a
Bind :: Program t a -> (a -> Program t b) -> Program t b
instance Monad (Program t) where
 return = Return
 (>>=) = Bind

See
Obsidian push arrays

```
data Push t s a = Push s (PushFun t a)
```

The general idea of push arrays is due to Koen Claessen.
Obsidian push arrays

-- | Push array. Parameterised over Program type and size type.

data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()

Push array only allows bulk request to push ALL elements via a writer function

The general idea of push arrays is due to Koen Claessen
Obsidian push arrays

-- | Push array. Parameterised over Program type and size type.

data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()
type Writer a = a -> EWord32 -> TProgram ()

consumer of a push array needs to apply the push-function to a suitable writer

Often the push-function is applied to a writer that stores its input value at the provided input index into memory. This is what the compute function does when applied to a push array.

The general idea of push arrays is due to Koen Claessen
Obsidian push arrays

The function `push` converts a pull array to a push array:

```plaintext
push :: (t *<=* Block) => ASize s => Pull s e -> Push t s e
push (Pull n ix) =
  mkPush n $ \wf ->
    forAll (sizeConv n) $ \i -> wf (ix i) i
```
Obsidian push arrays

The function push converts a pull array to a push array:

\[
push :: (t \leq Block) \Rightarrow ASize s \Rightarrow Pull s e \rightarrow Push t s e
\]

\[
push (Pull n ixf) =
\]

\[
mkPush n \; \backslash w f \rightarrow
\]

\[
\text{forAll (sizeConv n) \; \backslash i \rightarrow wf (ixf i) i}
\]

This function sets up an iteration schema over the elements as a forAll loop. It is not until the \(t \) parameter is fixed in the hierarchy that it is decided exactly how that loop is to be executed. All iterations of the forAll loop are independent, so it is open for computation in series or in parallel.
forall :: (t <= Block) => EWord32
 -> (EWord32 -> Program Thread ())
 -> Program t ()
forall n f = ForAll n f
forall :: (t <= Block) => EWord32
 -> (EWord32 -> Program Thread ())
 -> Program t ()
forall n f = ForAll n f

Type says that forall can’t be applied at the Grid level (because that would involve dreaming up #blocks and #threads per block)
forall :: (t <= Block) => EWord32
 -> (EWord32 -> Program Thread ())
 -> Program t ()
forall n f = ForAll n f

ForAll iterates a body (described by higher order abstract syntax) a given number of times over the resources at level t
iterations independent of each other
forall :: (t *<=* Block) => EWord32 -> (EWord32 -> Program Thread ()) -> Program t ()
forall n f = ForAll n f

ForAll iterates a body (described by higher order abstract syntax) a given number of times over the resources at level t
iterations independent of each other

t = Thread => sequential
T = Warp, Block => parallel
Obsidian push array

A push array is a length and a filler function.

Filler function encodes a loop at level t in the hierarchy.

Its argument is a writer function.

Push array allows only a bulk request to push all elements via a writer function.

When invoked, the filler function creates the loop structure, but it inlines the code for the writer inside the loop.

A push array with elements computed by f and writer wf corresponds to a loop for $(i \in [1,N]) \{ \text{wf}(i,f(i)); \}$

When forced to memory, each invocation of wf would write one memory location $A[i] = f(i)$
Push and pull arrays

Neither pull nor push arrays are manifest

Both fuse by default.

Both immutable.

Don’t appear in Expression or Program datatypes

Shallow Embedding

See Svenningsson and Axelsson on combining deep and shallow embeddings
Argh. Why two types of array??

Concatenation of pull arrays is inefficient.
Introduces conditionals (which can ruin performance)

Concatenation of Push arrays is efficient.
No conditionals.

splitting arrays up and using parts of them is easy using pull arrays.

Push and Pull arrays seem to have strengths and weaknesses that complement each other.

Pull good for reading. Push good for writing. Pull -> Push functions common
Back to example

incGrid1 :: Word32 -> DPull EWord32 -> DPush Grid EWord32
incGrid1 n arr = asGridMap (push . fmap (+1)) (splitUp n arr)
perform :: IO ()
perform =
 withCUDA $ do
 kern <- capture 512 (incGrid1 512)

 useVector (V.fromList [0..1023 :: Word32]) $ \ i ->
 withVector 1024 $ \ o ->
 do o <=< (1,kern) <=< i
 r <- peekCUDAVector o
 lift $ putStrLn $ show r
perform :: IO ()
perform =
 withCUDA $ do
 kern <- capture 512 (incGrid1 512)

 useVector (V.fromList [0..1023 :: Word32]) $ \ i ->
 withVector 1024 $ \ o ->
 do o <=< (1,kern) <=< i
 r <- peekCUDAVector o
 lift $ putStrLn $ show r
perform :: IO ()
perform =
 withCUDA $ do
 kern <- capture 512 (incGrid1 512)

 useVector (V.fromList [0..1023 :: Word32]) $ \ i ->
 withVector 1024 $ \ o ->
 do o <=< (1,kern) <=< i
 r <=< peekCUDAVector o
 lift $ putStrLn $ show r

*Reduction> perform
[1, 2, 3, 4, 5, 6, 7 ...]
#include <stdint.h>
extern "C" __global__ void gen0(uint32_t* input0, uint32_t n0,
uint32_t* output1)
{
 uint32_t bid = blockIdx.x;
 uint32_t tid = threadIdx.x;

 for (int b = 0; b < n0 / 512U / gridDim.x; ++b) {
 bid = blockIdx.x * (n0 / 512U / gridDim.x) + b;
 output1[bid * 512U + tid] = input0[bid * 512U + tid] + 1U;
 bid = blockIdx.x;
 __syncthreads();
 }
 bid = gridDim.x * (n0 / 512U / gridDim.x) + blockIdx.x;
 if (blockIdx.x < n0 / 512U % gridDim.x) {
 output1[bid * 512U + tid] = input0[bid * 512U + tid] + 1U;
 }
 bid = blockIdx.x;
 __syncthreads();
}
#include <stdint.h>
extern "C" __global__ void gen0(uint32_t* input0, uint32_t n0,
 uint32_t* output1)
{
 uint32_t bid = blockIdx.x;
 uint32_t tid = threadIdx.x;

 for (int b = 0; b < n0 / 512U / gridDim.x; ++b) {
 bid = blockIdx.x * (n0 / 512U / gridDim.x) + b;
 output1[bid * 512U + tid] = input0[bid * 512U + tid] + 1U;
 bid = blockIdx.x;
 __syncthreads();
 }
 bid = gridDim.x * (n0 / 512U / gridDim.x) + blockIdx.x;
 if (blockIdx.x < n0 / 512U)
 output1[bid * 512U + tid] = input0[bid * 512U + tid] + 1U;
 bid = blockIdx.x;
 __syncthreads();
}
withCUDA $ do
 kern <- capture 128 (incGrid1 512)

 useVector (V.fromList [0..1023 :: Word32]) $ \ i ->
 withVector 1024 $ \ o ->
 do o <=< (1,kern) <=< i
 r <- peekCUDAVector o
 lift $ putStrLn $ show r
#include <stdint.h>
extern "C" __global__ void gen0(uint32_t* input0, uint32_t n0, uint32_t* output1)
{
 uint32_t bid = blockIdx.x;
 uint32_t tid = threadIdx.x;

 for (int b = 0; b < n0 / 512U / gridDim.x; ++b) {
 bid = blockIdx.x * (n0 / 512U / gridDim.x) + b;
 for (int i = 0; i < 4; ++i) {
 tid = i * 128 + threadIdx.x;
 output1[bid * 512U + tid] = input0[bid * 512U + tid] + 1U;
 }
 tid = threadIdx.x;
 bid = blockIdx.x;
 __syncthreads();
 }
 bid = gridDim.x * (n0 / 512U / gridDim.x) + blockIdx.x;
 if (blockIdx.x < n0 / 512U % gridDim.x) {
 for (int i = 0; i < 4; ++i) {
 tid = i * 128 + threadIdx.x;
 output1[bid * 512U + tid] = input0[bid * 512U + tid] + 1U;
 }
 tid = threadIdx.x;
 }
 bid = blockIdx.x;
 __syncthreads();
}
compute instead of push

```c
#include <stdint.h>
extern "C" __global__ void gen0(uint32_t* input0, uint32_t n0,
                               uint32_t* output1)
{
  __shared__ uint8_t sbase[2048U];
  uint32_t bid = blockIdx.x;
  uint32_t tid = threadIdx.x;
  uint32_t* arr0 = (uint32_t*) (sbase + 0);

  for (int b = 0; b < n0 / 512U / gridDim.x; ++b) {
    bid = blockIdx.x * (n0 / 512U / gridDim.x) + b;
    arr0[tid] = input0[bid * 512U + tid] + 1U;
    __syncthreads();
    output1[bid * 512U + tid] = arr0[tid];
    bid = blockIdx.x;
    __syncthreads();
  }
  bid = gridDim.x * (n0 / 512U / gridDim.x) + blockIdx.x;
  if (blockIdx.x < n0 / 512U % gridDim.x) {
    arr0[tid] = input0[bid * 512U + tid] + 1U;
    __syncthreads();
    output1[bid * 512U + tid] = arr0[tid];
  }
  bid = blockIdx.x;
  __syncthreads();
}
```

Doesn’t make sense in this kernel but does in multistage (ie most) kernels
Point is to have control of memory use
-- generic parallel or sequential reduction
reduce :: (Compute t, Data a)
 => (a -> a -> a)
 -> SPull a
 -> Program t (SPush t a)
reduce f arr
 | len arr == 1 = return $ push arr
 | otherwise =
 do let (a1,a2) = halve arr
 arr' <- compute $ push $ zipWith f a1 a2
 reduce f arr'
--- generic parallel or sequential reduction
reduce :: (Compute t, Data a)
 => (a -> a -> a)
 -> SPull a
 -> Program t (SPush (a, a))
reduce f arr
 | len arr == 1 = return $ push arr
 | otherwise =
 do let (a1,a2) = halve arr
 arr' <- compute $ push $ zipWith f a1 a2
 reduce f arr'
reduce2stage :: Data a => Word32 -> (a -> a -> a) -> SPull a -> Program Block (SPush Block a)
reduce2stage m f arr = do
 arr' <- compute $ asBlock (fmap body (splitUp m arr))
 reduce f arr'
where body a = execWarp (reduce f a)

reduceGrid :: Data a => Word32 -> Word32 -> (a -> a -> a) -> DPull a -> DPush Grid a
reduceGrid m n f arr = asGrid $ fmap body (splitUp m arr)
where
 body a = execBlock (reduce2stage n f a)
coalesce :: ASize l
 => Word32 -> Pull l a -> Pull l (Pull Word32 a)
coalesce n arr =
 mkPull s $ \i ->
 mkPull n $ \j -> arr ! (i + (sizeConv s) * j)
where s = len arr `div` fromIntegral n

Access data by splitting up but also permuting the array (to give good memory access pattern)
red3 :: Data a
 => Word32
 -> (a -> a -> a)
 -> Pull Word32 a
 -> Program Block (SPush Block a)
red3 cutoff f arr
 | len arr == cutoff =
 return $ push $ fold1 f arr
 | otherwise =
 do
 let (a1,a2) = halve arr
 arr' <- compute (zipWith f a1 a2)
 red3 cutoff f arr'
red5' :: Data a

=> Word32
-> (a -> a -> a)
-> Pull Word32 a
-> Program Block (SPush Block a)

red5' n f arr =
do arr' <- compute $ asBlockMap (execThread' . seqReduce f)
 (coalesce n arr)

 red3 2 f arr'
red5' :: Data a
 => Word32
 -> (a -> a -> a)
 -> Pull Word32 a
 -> Program Block (SPush Block a)

red5' n f arr =
do arr' <- compute $ asBlockMap (execThread' . seqReduce f)
 (coalesce n arr)

 red3 2 f arr'

Reuse!!
A lot of index manipulation tedium is relieved!

Autotuning springs to mind!!
Reduction kernels on varying #elements/block

- red1
- red2
- red3
- red4
- red5
- red6
- red7

Seconds

#Elements per block
Fig. 11. The **threads-per-block** setting that achieved the best time shown in Figure 10. These settings are difficult to predict in advance. Kernels that use virtualized threads are highlighted, note that there are many of these amongst the best selection. Again, **elements-per-block** varies over the X axis.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
<th>8192</th>
<th>16384</th>
<th>32768</th>
</tr>
</thead>
<tbody>
<tr>
<td>red1</td>
<td>64</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>n/a</td>
</tr>
<tr>
<td>red2</td>
<td>64</td>
<td>128</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>n/a</td>
</tr>
<tr>
<td>red3</td>
<td>64</td>
<td>128</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>n/a</td>
</tr>
<tr>
<td>red4</td>
<td>64</td>
<td>64</td>
<td>128</td>
<td>64</td>
<td>64</td>
<td>128</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>red5</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>256</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>red6</td>
<td>32</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>red7</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>128</td>
<td>512</td>
<td>128</td>
</tr>
</tbody>
</table>
Fig. 18. The running time of scan algorithms for larger data sizes. The time reported is the sum of 1000 executions, excluding data transfer to and from the GPU memory. These numbers are collected on an NVIDIA GTX680. The presented Accelerate numbers are estimates based on a lower number of iterations as explained in Section 7.3.
Compilation to CUDA (overview)

1. Reification Produce a Program AST
2. Convert Program level datatype to list of statements
3. Liveness analysis for arrays in memory
4. Memory mapping
5. CUDA code generation (including virtualisation of threads, warps and blocks)
Compilation to CUDA (overview)

1. Reification: Produce a Program AST
2. Convert Program-level datatype to list of statements
3. Liveness analysis for arrays in memory
4. Memory mapping
5. CUDA code generation (including virtualisation of threads, warps, and blocks)

Obsidian is quite small
Could be a good EDSL to study!!
Summary I

Key benefit of EDSL is ease of design exploration

Performance is very satisfactory (after parameter exploration) comparable to Thrust

“Ordinary” benefits of FP are worth a lot here (parameterisation, reuse, higher order functions etc)

Pull and push arrays a powerful combination

In reality, also need mutable arrays (which are there but need further development, see Thielemann’s experience with Obsidian and Accelerate)

Providing a warp abstraction is good. CUDA doesn’t do it. But super GPU programmers are entirely warp oriented!!
Flexibility to add and control sequential behaviour is vital to performance (Thielemann)

Use of types to model the GPU hierarchy interesting!
gives something in between flat and nested data parallelism

constrains the user to programming idioms appropriate to the GPU
similar ideas could be used in other NUMA architectures

Need to adapt to changes in GPUs (becoming more and more general, e.g.
communication between threads in warps via “shuffles”)

What we REALLY need is a layer above Obsidian (plus autotuning)
see spiral.net for inspiring related work
I want a set of combinators with strong algebraic properties (e.g. for data-independent algorithms like sorting and scan).

Need something simpler and more restrictive than push arrays

Array combinators have not been sufficiently studied.

A community is forming See Array’15 with PLDI
The bigger picture

Obsidian is a good (backend) tool for exploring what is really the heart of the matter:

Understanding how to provide nice abstractions to the programmer while still gaining performance from parallel machines (which are only going to get more and more parallel)

This is compatible with Blelloch’s vision too
We would be happy if any of you wanted to work on using or developing Obsidian 😊

Joel Svenssson will be around soon for the second half of the year

CUDA programming is fun, but Obsidian programming is even more fun!