Parallel Functional Programming
Lecture 9
Data Parallelism II

Mary Sheeran
(with thanks to Ben Lippmeier for borrowed slides)

http://www.cse.chalmers.se/edu/course/pfp
DPH

Parallel arrays [: e :] (which can contain arrays)
Parallel arrays [: e :] (which can contain arrays)

Expressing parallelism = applying collective operations to parallel arrays

Note: demand for any element in a parallel array results in eval of all elements
DPH array operations

(!:) :: [:a:] -> Int -> a
sliceP :: [:a:] -> (Int,Int) -> [:a:]
replicateP :: Int -> a -> [:a:]
mapP :: (a->b) -> [:a:] -> [:b:]
zipP :: [:a:] -> [:b:] -> [(a,b):]
zipWithP :: (a->b->c) -> [:a:] -> [:b:] -> [:c:]
filterP :: (a->Bool) -> [:a:] -> [:a:]
concatP :: [:[:a:]:] -> [:a:]
concatMapP :: (a -> [:b:]) -> [:a:] -> [:b:]
unconcatP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
transposeP :: [:[:a:]:] -> [:[:a:]:]
expandP :: [:[:a:]:] -> [:b:] -> [:b:]
combineP :: [:Bool:] -> [:a:] -> [:a:] -> [:a:]
splitP :: [:Bool:] -> [:a:] -> ([:a:], [:a:])
Parallel array comprehensions

[[: forceOn p m l | p <- ps, isFar len l p :]]
Examples

\[
\text{svMul} \:: \ [(\text{Int}, \text{Float})] \rightarrow [\text{Float}] \rightarrow \text{Float} \\
\text{svMul} \ sv \ v = \text{sumP} \ [(f \times v !: i) \mid (i, f) \leftarrow sv :]
\]

\[
\text{smMul} \:: \ [[(\text{Int}, \text{Float})]] \rightarrow [\text{Float}] \rightarrow \text{Float} \\
\text{smMul} \ sm \ v = \text{sumP} \ [(\text{svMul} \ row \ v) \mid \text{row} \leftarrow \text{sm} :]
\]
Examples

svMul :: [:((Int,Float):):] -> [:Float:] -> Float
svMul sv v = sumP [: f*(v !: i) | (i,f) <- sv :]
Barnes Hut N-body simulation

Reduces cost from $O(N^2)$ to $O(N \log N)$

Uses octree to represent the hierarchical grouping of particles

Particles close to each other are grouped and their centre of gravity (centroid) is calculated.

When a particle with which they should interact is sufficiently far away, then the centroid can be used.

Usually done in 3D. This DPH example is in 2D (and slightly simplified), so uses quad tree.

The Barnes Hut paper is GREAT.
Barnes, Josh, and Hut Piet. "A hierarchical $O(N \log N)$ force-calculation algorithm."
Nature. 324. (1986)

http://www.nature.com/nature/journal/v324/n6096/pdf/324446a0.pdf
(Access when on a Chalmers computer)
Figure 2: Subdivision of area
Having constructed such a tree, the force on any particle \(p \) may be approximated by a simple recursive calculation. Start at the root cell of the tree, which contains the entire system. Let \(l \) be the length of the cell currently being processed and \(D \) the distance from the cell's centre-of-mass to \(p \). If \(l/D < \theta \), where \(\theta \) is a fixed accuracy parameter \(\sim 1 \), then include the interaction between this cell and \(p \) in the total being accumulated. Otherwise, resolve the current cell into its eight subcells, and recursively examine each one in turn. The core of the force calculation routine may be compactly expressed in SCHEME, a dialect of LISP:

```scheme
(define (acceleration particle ensemble)
  (cond ((singleton? ensemble)
              (newton-acceleration particle (the-element ensemble)))
        ((< (/ (diameter ensemble)
               (distance particle (centroid ensemble)))
           theta)
              (newton-acceleration particle (centroid ensemble)))
        (else
          (reduce sum-vector
                   (map (lambda (e) (acceleration particle e))
                        (subdivisions ensemble))))))
```
Barnes Hut (2D) in DPH

-- Compute one step of the n-body simulation
oneStep :: [::Particle::] -> [::Particle::]
oneStep particles = moveParticles particles forces
 where
tree = buildTree initialArea particles
forces = calcForces (lengthOf initialArea) tree particles

buildTree :: Area -> [::Particle::] -> Tree
calcForces :: Float -> Tree -> [::Particle::] -> [::Force::]
moveParticles :: [::Particle::] -> [::Force::] -> [::Particle::]
lengthOf :: Area -> Float
moveParticles :: [:Particle:] -> [:Force:] -> [:Particle:]
moveParticles ps fs = zipWithP moveParticle ps fs

moveParticle :: Particle -> Force -> Particle
moveParticle (Particle { mass = m
 , location = loc
 , velocity = vel })
 force
= Particle { mass = m
 , location = loc + vel * timeStep
 , velocity = vel + accel * timeStep }
where
 accel = force / m
data Tree = Node Mass Location [:Tree:]
 -- Rose tree for spatial decomposition
The only way to get parallelism over sub-trees.
data Tree = Node Mass Location [::Tree:]
 -- Rose tree for spatial decomposition

-- Perform spatial decomposition and build the tree
buildTree :: Area -> [:Particle:] -> Tree
buildTree area [: p :] = Node (mass p) (location p) [::]
builtTree area particles = Node m l subtrees
 where
 (m,l) = calcCentroid subtrees
 subtrees = [: buildTree a ps
 | a <- splitArea area
 , let ps = [:p | p <- particles, inArea a p:]
 , lengthP ps > 0 :]
data Tree = Node Mass Location [::Tree::]
 -- Rose tree for spatial decomposition

-- Perform spatial decomposition and build the tree
buildTree :: Area -> [:Particle:] -> Tree
buildTree area [: p :] = Node (mass p) (location p)
buildTree area particles = Node m l subtrees
 where
 (m,l) = calcCentroid subtrees
 subtrees = [: buildTree a ps |
 a <- splitArea area
 , let ps = [:p | p <- particles, inArea a p:]
 , lengthP ps > 0 :]
data Tree = Node Mass Location [:Tree:]
 -- Rose tree for spatial decomposition

-- Perform spatial decomposition and build the tree
buildTree :: Area -> [:Particle:] -> Tree
buildTree area [: p :) = Node (mass p) (location p) [: :)
buildTree area particles = Node m l subtrees
 where
 (m, l) = calcCentroid subtrees
 subtrees = [: buildTree a ps |
 a <- splitArea area
 , let ps = [: p | p <- particles, inArea a p:] |
 , lengthP ps > 0 :)
calcForces :: Float -> Tree -> [:Particle:] -> [:Force:]
calcForces len (Node m l ts) ps
 = let
 far_forces = [: forceOn p m l | p <- ps, isFar len l p :]
 near_ps = [: p | p <- ps, not (isFar len l p) :]
 near_forces_s = [: calcForces (len / 2) t near_ps | t <- ts :]
 near_forces = [: sumForces p_forces
 | p_forces <- transposeP near_forces_s :]
 in
 combineP [:isFar len l p | p <- ps:] far_forces near_forces
Performance

Figure 6. Benchmark Runtime Performance
Summary of example

Nestedness is essential in this example

Feels like just replacing [] by [: :] but authors caution that deciding on parallelisation needs thought and has influence on communication needed

Doesn’t yet run faster than using Data.Vector, but getting there!
Data parallelism

Perform same computation on a collection of differing data values

eamples: HPF (High Performance Fortran)
CUDA

Both support only flat data parallelism

Flat: each of the individual computations on (array) elements is sequential
those computations don’t need to communicate
parallel computations don’t spark further parallel computations
Regular, Shape-polymorphic, Parallel Arrays in Haskell

Gabriele Keller† Manuel M. T. Chakravarty† Roman Leshchinsky†
Simon Peyton Jones‡ Ben Lippmeier‡

†Computer Science and Engineering, University of New South Wales
{keller,chak,rl,benl}@cse.unsw.edu.au
‡Microsoft Research Ltd, Cambridge
simonpj@microsoft.com

API for purely functional, collective operations over dense, rectangular, multi-dimensional arrays supporting shape polymorphism

ICFP 2010
Ideas

Purely functional array interface using collective (whole array) operations like map, fold and permutations can
 – combine efficiency and clarity
 – focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird Meertens formalism

Provides shape polymorphism not in a standalone specialist compiler like SAC, but using the Haskell type system
terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension
terminology

Regular arrays
dense, rectangular

shape polymorphic
functions work

note: the arrays are purely functional and immutable

All elements of an array are demanded at once \(\rightarrow\) parallelism

\(P\) processing elements, \(n\) array elements \(\rightarrow\) \(n/P\) consecutive elements on each proc. element
But things moved on!

Repa from ICFP 2010 had ONE type of array (that could be either delayed or manifest, like in Obsidian)

A paper from the Haskell’11 showed efficient parallel stencil convolution

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf
Fancier array type

```haskell
data Array sh a
  = Array { arrayExtent :: sh
            , arrayRegions :: [Region sh a] }

data Region sh a
  = Region { regionRange :: Range sh
              , regionGen  :: Generator sh a }

data Range sh
  = RangeAll
    | RangeRects { rangeMatch :: sh -> Bool
                  , rangeRects :: [Rect sh] }

data Rect sh
  = Rect sh sh

data Generator sh a
  = GenManifest { genVector :: Vector a }
    | forall cursor. GenCursored { genMake :: sh -> cursor
                                  , genShift :: sh -> cursor -> cursor
                                  , genLoad  :: cursor -> a }
```

Figure 5. New Repa Array Types
Fancier array type

But you need to be a guru to get good performance!
Put Array representation into the type!

The fundamental problem with Repa 1 & 2 is the following: at a particular point in the code, the programmer typically has a clear idea of the array representation they desire. For example, it may consist of three regions, left edge, middle, right edge, each of which is a delayed array. Although this knowledge is statically known to the programmer, it is invisible in the types and only exposed to the compiler if very aggressive value inlining is used. Moreover, the programmer’s typeless reasoning can easily fail, leading to massive performance degradation.

The solution is to expose static information about array representation to Haskell’s main static reasoning system; its type system.
http://www.youtube.com/watch?v=YmZtP11mBho

quote on previous slide was from this paper
version

I use Repa 3.2.1.1 (which works with the GHC that you get with the current Haskell platform)

cabal update
cabal install repa-3.2.1.1
cabal install repa-algorithms-3.2.1.1
cabal install bmp-1.2.1.1
cabal install repa-io-3.2.1.1
cabal install repa-examples-3.2.1.1

If you have a later GHC installed, you can use a later Repa, and probably get better performance.
10 Array representations!

- D – Delayed arrays (delayed) §3.1
- C – Cursored arrays (delayed) §4.4
- U – Adaptive unboxed vectors (manifest) §3.1
- V – Boxed vectors (manifest) §4.1
- B – Strict byte arrays (manifest) §4.1
- F – Foreign memory buffers (manifest) §4.1
- P – Partitioned arrays (meta) §4.2
- S – Smallness hints (meta) §5.1.1
- I – Interleave hints (meta) §5.2.1
- X – Undefined arrays (meta) §4.2
10 Array representations!

- D – Delayed arrays (delayed) §3.1
- C – Cursored arrays (delayed) §4.4
- U – Adaptive unboxed vectors (manifest) §3.1
- V – Boxed vectors (manifest) §4.1
- B – Strict byte arrays (manifest) §4.1
- F – Foreign memory buffers (manifest) §4.1
- P – Partitioned arrays (meta) §4.2
- S – Smallness hints (meta) §5.1.1
- I – Interleave hints (meta) §5.2.1
- X – Undefined arrays (meta) §4.2

But the 18 minute presentation at Haskell’12 makes it all make sense!! Watch it!

http://www.youtube.com/watch?v=YmZtP11mBho
Type Indexing

data family Array rep sh e
type index giving representation
Type Indexing

data family Array rep shape
Type Indexing

data family Array rep sh e

element type
map

:: (Shape sh, Source r a) =>
(a -> b) -> Array r sh a -> Array D sh b
map

\[
\text{map} :: (\text{Shape } \text{sh}, \text{Source } r \ a) \Rightarrow
\]
\[
(a \rightarrow b) \rightarrow \text{Array } r \ \text{sh} \ a \rightarrow \text{Array } D \ \text{sh} \ b
\]

\[
\text{map } f \ \text{arr} = \text{case delay } \text{arr of ADelayed } \text{sh} \ g \rightarrow
\]
\[
\text{ADelayed } \text{sh} \ (f \ . \ g)
\]
Fusion

Delayed (and cursored) arrays enable fusion that avoids intermediate arrays

User-defined worker functions can be fused

This is what gives tight loops in the final code
import Data.Array.Repa as R

will later see

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)
example

```haskell
import Data.Array.Repa as R

will later see

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

index type SHAPE EXTENT
```
import Data.Array.Repa as R

will later see

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

DIM0 = Z (scalar)
DIM1 = DIM0 :: Int
DIM2 = DIM1 :: Int
example

\[
\text{transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e}
\]

\[
\begin{align*}
\text{DIM0} &= Z \quad \text{(scalar)} \\
\text{DIM1} &= \text{DIM0} :. \text{Int} \\
\text{DIM2} &= \text{DIM1} :. \text{Int}
\end{align*}
\]
snoc lists

Haskell lists are cons lists
1:2:3:[] is the same as [1,2,3]

Repa uses snoc lists at type level for shape types
and at value level for shapes

DIM2 = Z :: Int :: Int is a shape type

Z :: i :: j read as (i,j) is an index into a two dim. array
more general transpose
(on inner two dimensions)

```haskell
transpose :: (Shape sh, Source r e) =>
    Array r ((sh :: Int) :: Int) e
-> Array D ((sh :: Int) ::. Int) e
```
more general transpose (on inner two dimensions) is provided

```haskell
transpose :: (Shape sh, Source r e) =>
    Array r ((sh :: Int) :: Int) e
  -> Array D ((sh :: Int) :: Int) e
```

This type says an array with at least 2 dimensions. The function is *shape polymorphic*
more general transpose (on inner two dimensions) is provided

```
transpose :: (Shape sh, Source r e) =>
            Array r ((sh :: Int) :: Int) e
        -> Array D ((sh :: Int) :: Int) e
```

Functions with at-least constraints become a parallel map over the unspecified dimensions (called rank generalisation)

Important way to express parallel patterns
more general transpose
(on inner two dimensions)

\[
\text{transpose} \\
:: (\text{Shape} \ sh, \ \text{Source} \ r \ e) \Rightarrow \\
\text{Array} \ r \ ((sh :: \ \text{Int}) :: \ \text{Int}) \ e \\
\to \ \text{Array} \ D \ ((sh :: \ \text{Int}) :: \ \text{Int}) \ e
\]

D stands for delayed array
filter :: (Elt e) => (E -> Bool) -> Array DIM1 e -> Array DIM1 e

can’t be shape polymorphic

the shape of the output depends on the value of the input

filtering rows in a matrix might give different lengths (but we only deal with rectangular arrays)
Remember

Arrays of type (Array D sh a) or (Array C sh a) are *not real arrays*. They are represented as functions that compute each element on demand. You need to use `computeS`, `computeP`, `computeUnboxedP` and so on to actually evaluate the elements.

(quote from

which has lots more good advice, including about compiler flags)
Example: sorting
bitonic sequence

inc (not decreasing)
then
dec (not increasing)

or a cyclic shift of such a sequence
Butterfly

bitonic
Butterfly

bitonic

bitonic

bitonic

>=

bitonic
Making a recursive sorter (D&C)

Make a bitonic sequence using two half-size sorters
Batcher’s sorter (bitonic)
bitonic merger
dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int) -> Int -> Array U (sh :: Int) Int -> m (Array U (sh :: Int) Int)

dee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf

where
ixf (sh :: i) = if (testBit i s) then (g a b) else (f a b)
where
a = arr ! (sh :: i)
b = arr ! (sh :: (i `xor` s2))
s2 = (1::Int) `shiftL` s

assume input array has length a power of 2, s > 0 in this and later functions
bitonicMerge :: (Monad m, Shape sh) =>
 Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)
bitonicMerge n = compose [dee max min (n-i) | i <- [1..n]]
compose :: Monad m => [a -> m a] -> a -> m a
compose [] arr = return arr
compose (f:fs) arr
 = do
 arr1 <- f arr
 compose fs arr1
tmerge
vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int) -> Int -> Array U (sh ::. Int) Int -> m (Array U (sh ::. Int) Int)

vee f g s arr = let (sh ::. len)
 = extent arr in computeUnboxedP $ fromFunction (sh ::. len) ixf
 where
 ixf (sh ::. ix) = if (testBit ix s) then (g a b) else (f a b)
 where
 a = arr ! (sh ::. ix)
 b = arr ! (sh ::. newix)
 newix = flipLSBsTo s ix
tmerge :: (Monad m, Shape sh) =>
 Int -> Array U (sh ::. Int) Int -> m (Array U (sh ::. Int) Int)

tmerge n = compose $ vee min max (n-1) : [dee min max (n-i) | i <- [2..n]]
tsort :: (Monad m, Shape sh) =>
 Int -> Array U (sh ::. Int) Int -> m (Array U (sh ::. Int) Int)

tsort n = compose [tmerge i | i <- [1..n]]
Performance is decent!

Initial benchmarking for 2^{20} Ints

Around 880ms on 4 cores on this laptop (and down to 633 ms using –qa –qg flags with this year’s Repa)

Compared to 1.77 seconds for Data.List.sort (which is sequential)

Still slower than Persson’s non-entry from last year
about a factor of 2, which is about what you would expect when comparing Batcher’s bitonic sort to quicksort
Comments

Should be very scalable

Can probably be sped up! Need to add sequentialness 😊

Similar approach might greatly speed up the FFT in repa-examples
(and I found a guy running an FFT in Haskell competition)

I wonder if more standard higher order functions (without bit hackery)
could be made to work well (= fast) (zipWith, interleave etc.)

Note that this approach turned a nested algorithm into a flat one

Did you notice that I didn’t mention scan ?? (Repa needs one!)

Study examples written by the master
transpose 2D array in parallel

```haskell
transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)
transpose2P arr
    = arr `deepSeqArray`
      do computeUnboxedP
         $ unsafeBackpermute new_extent swap arr
    where swap (Z :. i :. j) = Z :. j :. i
         new_extent = swap (extent arr)
```
Matrix Multiplication

\[(A \cdot B)_{i,j} = \sum_{k=1}^{n} A_{i,k} \cdot B_{k,j}\]

<table>
<thead>
<tr>
<th>a_{11}</th>
<th>a_{12}</th>
<th>a_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{21}</td>
<td>a_{22}</td>
<td>a_{23}</td>
</tr>
<tr>
<td>a_{31}</td>
<td>a_{32}</td>
<td>a_{33}</td>
</tr>
<tr>
<td>a_{41}</td>
<td>a_{42}</td>
<td>a_{43}</td>
</tr>
</tbody>
</table>

\[\cdot\]

<table>
<thead>
<tr>
<th>b_{11}</th>
<th>b_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_{21}</td>
<td>b_{22}</td>
</tr>
<tr>
<td>b_{31}</td>
<td>b_{32}</td>
</tr>
</tbody>
</table>

\[=\]

<table>
<thead>
<tr>
<th>c_{11}</th>
<th>c_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{21}</td>
<td>c_{22}</td>
</tr>
<tr>
<td>c_{31}</td>
<td>c_{32}</td>
</tr>
<tr>
<td>c_{41}</td>
<td>c_{42}</td>
</tr>
</tbody>
</table>
mmultP :: Monad m
 => Array U DIM2 Double
 -> Array U DIM2 Double
 -> m (Array U DIM2 Double)

mmultP arr brr
 = [arr, brr] `deepSeqArrays`
 do trr <- transpose2P brr
 let (Z :. h1 :. _) = extent arr
 let (Z :. _ :. w2) = extent brr
 computeP
 $ fromFunction (Z :. h1 :. w2)
 $ \ix -> R.sumAllS
 $ R.zipWith (*)
 (unsafeSlice arr (Any :. (row ix) :. All))
 (unsafeSlice trr (Any :. (col ix) :. All))
is your friend

See for example

Conclusions

Based on DPH technology

Good speedups!

Neat programs

Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled (see lecture later by Nick Frolov)

Array representations for parallel functional programming is an important, fun and frustrating research topic 😊
Feel free to mail questions

MAKE USE of Nick! He knows a lot and is happy to guide you.