Model-Based Testing

(DIT848 / DAT260) Spring 2015

Gerardo Schneider

Dept. of Computer Science and Engineering

Chalmers | University of Gothenburg

gerardo@cse.gu.se
http://www.cse.chalmers.se/~gersch/

Model-Based Testing

- What is testing?
 - The process of systematically experimenting with an object in order to establish its quality
 - Object "=" software -> software testing
- Why software testing?
 - Most used technique in industry to increase confidence in Sw quality
 - Job possibilities [©]
- What is model-based testing?
 - Generate tests (semi-)automatically from the model of the system under test
- Why model-based testing?
 - Cost saving, systematic approach to testing, automated traceability, early detection of flaws, etc.

Overview course content

- Overview on verification and validation
- Testing in general
 - Black box testing (Junit)
 - White box testing (Coverage analysis)
- Property-Based testing
 - QuickCheck
- FSM / EFSM
- Model-based testing
 - How to select your tests
 - Graph theory in MBT
 - ModelJUnit
 - Making your tests executably

How much of each topic?

- We will discuss today

Guest lectures:

QuickCheck

Theory and practice

3

Learning Outcomes

- Explain the distinction between software verification and validation;
- Describe the connection between software development phases and kinds of testing;
- Describe and explain (a number of) different test methods, and use them in practical situations;
- Describe and explain what model-based testing is;
- Construct models in the modeling and specification languages learned in the course;
- Construct appropriate and meaningful test cases, and interpret and explain (to stakeholders) the results of the application of such test cases (using appropriate tools) to practical examples;
- Apply model-based testing on realistic examples;
- Exemplify and describe tools for testing software, and use them and interpret their output;

Identify and hypothesize about sources of program failures, and reflect on how to better verify the correctness of such programs.

Staff

Gerardo Schneider - gerardo@cse.gu.se

- Guest Lecturers (on QuickCheck)
 - Koen Claessen (Chalmers) TBC
 - John Hughes (Chalmers / QuviQ) TBC

- Course assistant
 - Grégoire Détrez gregoire.detrez@cse.gu.se

Student representatives

- (baxemyr@student.chalmers.se)
- Priyadarshini Chilaka (chilaka@student.chalmers.se)
- Nakyanzi lynnie Gwosuta (nakyanzi@student.chalmers.se)
- Annika Johansson (annikjoh@student.chalmers.se)

Course organization

- 12 lectures + tutorials
 - Approx. 2h each, in modules of around 45 min
 - Lectures given at the beginning of the course
 - Tutorials to help on the practical aspects
- Mini-projects 3 HEC
 - Mandatory!
 - Meeting with the assistant on predefined dates
- All the information on the course page
 - http://www.cse.chalmers.se/edu/year/2015/course/DAT260/
 - Considered official! (Any message will be written in the News section under Home)
 - Students from Chalmers and GU different systems
 - Individual written exam 4.5 HEC

Literature

- M. Utting and B. Legeard, Practical Model-Based Testing. Elsevier (Morgan Kaufmann Publishers, 2007)
 - An electronic version is available at http://bit.ly/wGlT94 (you must be logged in Chalmers' network to get access)
- Other interesting books
 - P.C. Jorgensen. Software Testing: A Craftsman's Approach (Auerbach Publications, 3rd edition, 2008)
 - Sommerville...
- Papers on QuickCheck
 - See course homepage
- Other books and references
 - See list in course homepage

Mini-Projects

- Not fixed days for meetings Check homepage ("Lectures")
- Each group will choose a software system to be tested (among those proposed by the teachers, or by the group)
- Groups of 3 persons (exceptionally 2 members)
- 3 mandatory reports:
 - 30 Apr, 13:00: Manual testing and testing with Junit
 - 11 May, 13:00: EFSM
 - 26 May, 13:00: Final report (MBT using ModelJUnit)
- 27 May: Group's final presentation
- Mandatory! (To pass the course you need to pass both the mini-project and the written exam)
- Information about how to proceed to "register" your group, choose a topic, etc, will be posted in the homepage later this week

Written Exam (Individual)

- Written exam: June 3, 2015 at 8h30 (Johanneberg)
- Re-exam: August 24, 2014 at 14h00 (Johanneberg)

Important!

- The exam is designed to increase the confidence that a student passing the course achieve the Intended Learning Outcomes
- Strongly recommended to learn when you work on the assignments!
- So, most probably the exam will consist in 5 tasks widely covering the content of the course
- You will need to have at least 50/100 points for getting 6 (3) (and at least 65 points for 4) and at least a minimum of correct answers for each task (e.g., 8 points per task)
- To get VG (5) you will need to have at least 80/100 points and at least a minimum of correct answers for each task (e.g., 12 points per task)
- Open book exam modality

Important: About examination!

For GU students:

- There are 2 "moments"
 - Individual written exam: 4.5 HEC (U, G, VG)
 - Assignment (mini-project): 3.0 HEC (U, G)

For Chalmers students:

- Formally speaking there is only 1 "moment" (the written exam 7.5 HEC (U, 3,4,5))
 - To avoid discrimination the mini-project will be counted as for GU students
- NOTE: If you don't pass the course you will have to make the mni-project next year again!

The 2 "moments" modality will be applicable to Chalmers students from 2016

Changes w.r.t. last year Result of course evaluation

- QuickCheck for Haskell: difficult for most students (more than 50% have not background on functional programming)
 - QuickCheck for Java this year
- Change the setting of the weekly meetings as "open" consultation were not used; e.g. have tutorials on the tools used in the course and have more dedicated meetings
 - Mandatory meetings with each group on specific dates
 - There will be 4 tutorials
- Assignments: last one too long; have less assigments and more complex ones (and more time to work on them)
 - We will have mini-project instead of weekly assignments
 - Lectures have been reorganized so all the theory is there before starting working on assignments
- Some questions in the exam were ambiguous/unclear
 - We will improve the formulation of the written exam

What is your background?

Number of students: 15 (Chalmers) + 11 (GU)

- Knowledge on logic?
 - Propositional (classical): 5 (FOL: 0)
 - Other: 1 (LTL)
- Which functional prog. lang. do you know?
 - Haskell: 5
 - Erlang: 10
 - Other: 1 (Lisp)
- Which imperative/OO prog. lang. do you know?
 - Java: 24
 - C (C++): 24
 - Other: 6 (C# / Python)
- Knowledge on Testing? 11
 - Knowledge on automata theory or FSM (Finite State Machines)? 5
 - Knowledge on QuickCheck? 7

Preliminary schedule

- Is the content "appropriate" according to your background?
- Remember requirements for the course:
 - General programming knowledge in imperative/object oriented (ideally Java) (and functional programming)
 - Knowledge of propositional logic
 - Have some experience in testing/debugging your own programs

Wish list...

- What are your expectations?
- Something you would like to learn on testing (or verification in general) not covered in the programme?
- Are there topics you already know and don't want to see again?

About Registration...

- If you are a GU student
 - You need to register through the Student portal at GU
- For Chalmers students (late registration)
 - Contact the Studieexpeditionen (student office) student_office.cse@chalmers.se

Questions?

Check the course page regularly

Hope you enjoy the course!