Homework 3

Exercise 1: Find closed λ -terms F such that

- 1. F x = F (called the "eater")
- 2. F x = x F

Exercise 2: We consider a type T with a constant a: T. Find two pairs (t, u) of terms $t: T \to T$ and u: T such that $t \ u = a$.

Exercise 3: We recall the nameless presentation of typed lambda-calculus with

$$t ::= n \mid \lambda T.t \mid t t \mid bv \qquad bv ::= true \mid false$$
$$n ::= 0 \mid n+1 \qquad T ::= Bool \mid T \to T$$

We use also sequences of terms ts ::= () | (ts, t) and contexts $\Gamma, \Delta ::= () | \Gamma.T.$

Define in Agda the typing relation $\Gamma \vdash t : T$. From this we can define the relation $\Delta \vdash ts : \Gamma$ by $\Delta \vdash () : ()$ and $\Delta \vdash (ts, t) : \Gamma T$ if $\Delta \vdash ts : \Gamma$ and $\Delta \vdash t : T$.

Define in Agda a substitution operation u[ts] such that $() \vdash u[ts] : T$ given $\Gamma \vdash t : T$ and $() \vdash ts : \Gamma$. (Hint: One can define first the concatenation Γ, Δ of two contexts and define more generally $\Delta \vdash u[ts] : T$ if $() \vdash ts : \Gamma$ and $\Gamma, \Delta \vdash u : T$.)

Exercise 4: Show that a lambda term in normal form can be written $\lambda x_1 : T_1 \dots \lambda x_k : T_k \cdot x M_1 \dots M_l$ where we can have k = 0 or l = 0 and M_1, \dots, M_l are in normal form. If k = 0 the term is of the form $x M_1 \dots M_l$ and if l = 0 the term is of the form $\lambda x_1 \dots \lambda x_k x$. Another way to state this is that we have the following grammar for terms in normal form

$$N ::= \lambda x : T.N \mid K \qquad \qquad K ::= x \mid K N$$

Use this to enumerate the closed terms of the following types (ι is a ground type)

- 1. $\iota \to \iota$
- 2. $\iota \rightarrow \iota \rightarrow \iota$
- 3. $(\iota \to \iota) \to \iota \to \iota$
- 4. $\iota \to (\iota \to \iota) \to \iota$
- 5. $(\iota \to \iota) \to \iota$
- 6. $((\iota \to \iota) \to \iota) \to \iota$