Homework 3

Exercise 1: Find closed λ-terms F such that

1. $F x=F$ (called the "eater")
2. $F x=x F$

Exercise 2: We consider a type T with a constant $a: T$. Find two pairs (t, u) of terms $t: T \rightarrow T$ and $u: T$ such that $t u=a$.

Exercise 3: We recall the nameless presentation of typed lambda-calculus with

$$
\begin{gathered}
t::=n|\lambda T . t| t t \mid b v \quad b v::=\text { true } \mid \text { false } \\
n::=0 \mid n+1 \quad T::=\text { Bool } \mid T \rightarrow T
\end{gathered}
$$

We use also sequences of terms $t s::=() \mid(t s, t)$ and contexts $\Gamma, \Delta::=() \mid \Gamma . T$.
Define in Agda the typing relation $\Gamma \vdash t: T$. From this we can define the relation $\Delta \vdash t s: \Gamma$ by $\Delta \vdash():()$ and $\Delta \vdash(t s, t): \Gamma . T$ if $\Delta \vdash t s: \Gamma$ and $\Delta \vdash t: T$.

Define in Agda a substitution operation $u[t s]$ such that ()$\vdash u[t s]: T$ given $\Gamma \vdash t: T$ and () $\vdash t s: \Gamma$. (Hint: One can define first the concatenation Γ, Δ of two contexts and define more generally $\Delta \vdash u[t s]: T$ if ()$\vdash t s: \Gamma$ and $\Gamma, \Delta \vdash u: T$.)

Exercise 4: Show that a lambda term in normal form can be written $\lambda x_{1}: T_{1} \ldots \lambda x_{k}$: $T_{k} . x M_{1} \ldots M_{l}$ where we can have $k=0$ or $l=0$ and M_{1}, \ldots, M_{l} are in normal form. If $k=0$ the term is of the form $x M_{1} \ldots M_{l}$ and if $l=0$ the term is of the form $\lambda x_{1} \ldots \lambda x_{k} x$. Another way to state this is that we have the following grammar for terms in normal form

$$
N::=\lambda x: T . N|K \quad K::=x| K N
$$

Use this to enumerate the closed terms of the following types (ι is a ground type)

1. $\iota \rightarrow \iota$
2. $\iota \rightarrow \iota \rightarrow \iota$
3. $(\iota \rightarrow \iota) \rightarrow \iota \rightarrow \iota$
4. $\iota \rightarrow(\iota \rightarrow \iota) \rightarrow \iota$
5. $(\iota \rightarrow \iota) \rightarrow \iota$
6. $((\iota \rightarrow \iota) \rightarrow \iota) \rightarrow \iota$
