Logic in Computer Science

Motivations for temporal logic

One uses temporal logic for specifying and proving properties of reactive systems (e.g. functional reactive programming). One remarkable aspect of the logics we study (LTL and CTL) is that they are decidable, contrary to first-order logic.

For Linear Temporal Logic, a proposition is not representing a value 0 or 1 but a(n infinite) binary sequence, e.g. $0,0,0, \ldots$ or $1,0,1,0, \ldots$ One early application of linear temporal logic by A. Church (1957), was for the analysis of circuit. If we introduce the delay operation $X\left(b_{0}, b_{1}, \ldots\right)=\left(b_{1}, b_{2}, \ldots\right)$ then the recursive equation $a_{0}=1$ and $X(a)=\neg a$ defines the alterning sequence $a_{0}=1, a_{1}=0, a_{2}=1, \ldots$

Linear Temporal Logic

The syntax extends the one of propositional logic by the modalities

$$
\varphi::=F \varphi|G \varphi| X \varphi
$$

A model is now a function $\alpha p n$ which takes as argument a natural number n and an atomic formula p and produces 0 or 1 . We define $\alpha^{(k)} p n=\alpha p(n+k)$. We can then define $\alpha \models \varphi$ by induction on φ

- $\alpha \models p$ iff $\alpha p 0=1$
- $\alpha \models \varphi \rightarrow \psi$ iff $\alpha \models \varphi$ implies $\alpha \models \psi$
- $\alpha \models \neg \psi$ iff not $\alpha=\psi$
- $\alpha \models X \psi$ iff $\alpha^{(1)} \models \psi$
- $\alpha \models F \psi$ iff $\alpha^{(k)} \models \psi$ for some $k \geqslant 0$
- $\alpha \models G \psi$ iff $\alpha^{(k)} \models \psi$ for all $k \geqslant 0$

Another way to see this definition is to consider that a model α associates to an atomic formula a binary sequence $b_{0}, b_{1}, b_{2}, \ldots$ and then, by induction, a binary sequence to any formula, using the definitions

$$
\begin{gathered}
X\left(b_{0}, b_{1}, \ldots\right)=\left(b_{1}, b_{2}, \ldots\right) \\
F\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\left(\bigvee_{k} b_{k}, \bigvee_{k \geqslant 1} b_{k}, \bigvee_{k \geqslant 2} b_{k}, \ldots\right) \\
G\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\left(\bigwedge_{k} b_{k}, \bigwedge_{k \geqslant 1} b_{k}, \bigwedge_{k \geqslant 2} b_{k}, \ldots\right)
\end{gathered}
$$

where $1=\bigvee_{k \geqslant n} b_{k}$ iff $1=b_{k}$ for some $k \geqslant n$ and where $1=\bigwedge_{k \geqslant n} b_{k}$ iff $1=b_{k}$ for all $k \geqslant n$.
The semantics of ψ is the sequence $\alpha \models \psi, \alpha^{(1)} \models \psi, \alpha^{(2)} \models \psi, \ldots$
If we write $\varphi=\psi$ for $\alpha \models \varphi$ iff $\alpha \models \psi$ and $\varphi \leqslant \psi$ for $\alpha \models \varphi \rightarrow \psi$ it can then be shown that

1. we have $F \varphi=\varphi \vee X(F \varphi)$ and $\varphi \vee X \delta \leqslant \delta$ implies $F \varphi \leqslant \delta$. In particular $F \varphi$ is the least solution δ of the equation $\varphi \vee X \delta=\delta$
2. we have $G \varphi=\varphi \wedge X(G \varphi)$ and $\delta \leqslant \varphi \wedge X \delta$ implies $\delta \leqslant G \varphi$. In particular $G \varphi$ is the greatest solution δ of the equation $\delta=\varphi \wedge X \delta$
