Logic in Computer Science

For a given language \mathcal{F}, \mathcal{P} , a first-order theory is a set T of sentences (closed formulae) in this given language. The elements of T are also called axioms of T.

A model of T is a model \mathcal{M} of the given language such that $\mathcal{M} \models \psi$ for all sentences ψ in T.

 $T \vdash \varphi$ means that we can find ψ_1, \dots, ψ_n in T such that $\psi_1, \dots, \psi_n \vdash \varphi$.

 $T \models \varphi$ means that $\mathcal{M} \models \varphi$ for all models \mathcal{M} of T.

The generalized form of soundness is that $T \vdash \varphi$ implies $T \models \varphi$ and completness is that $T \models \varphi$ implies $T \vdash \varphi$.

If T is a finite set ψ_1, \ldots, ψ_n this follows from the usual statement of soundness $(\vdash \delta \text{ implies } \models \delta)$ and completness $(\models \delta \text{ implies } \vdash \delta)$. Indeed, in this case, we have $T \vdash \varphi$ iff $\vdash (\psi_1 \land \cdots \land \psi_n) \rightarrow \varphi$ and $T \models \varphi$ iff $\models (\psi_1 \land \cdots \land \psi_n) \rightarrow \varphi$.

Theory of equivalence relations

The language is $\mathcal{P} = \{E\}$, binary relation, and $\mathcal{F} = \emptyset$. The axioms are

$$\forall x. \ E(x,x)$$
 $\forall x \ y \ z. \ (E(x,z) \land E(y,z)) \rightarrow E(x,y)$

We can then show $T \vdash \forall x \ y. E(x,y) \rightarrow E(y,x)$ and $T \vdash \forall x \ y \ z. \ (E(x,y) \land E(y,z)) \rightarrow E(x,z)$.

Theory about orders

The theory of strict order. The language is $\mathcal{P} = \{R\}$, binary relation, and $\mathcal{F} = \emptyset$. The axioms are

$$\forall x. \neg R(x, x)$$
 $\forall x \ y \ z. \ (R(x, y) \land R(y, z)) \rightarrow R(x, z)$

We can add equality and get the theory T_{lin} of linear orders

$$\forall x \ y. \ (x \neq y) \rightarrow (R(x,y) \lor R(y,x))$$

Models are given by the usual order on $\mathbb{N}, \mathbb{Q}, \mathbb{R}$. The model of rationals $(\mathbb{Q}, <)$ also satisfies

$$\psi_1 = \forall x. \exists y. \ R(x,y)$$
 $\psi_2 = \forall x. \exists y. \ R(y,x)$ $\psi_3 = \forall x \ y. \ R(x,y) \rightarrow \exists z. \ R(x,z) \land R(z,y)$

It can be shown that we have $(\mathbb{Q}, <) \models \varphi$ iff $(\mathbb{R}, <) \models \varphi$ iff $T_{lin}, \psi_1, \psi_2, \psi_3 \vdash \varphi$ and furthermore, there is an algorithm to decide whether $(\mathbb{Q}, <) \models \varphi$ holds or not.

Theory about arithmetic

The language is $\mathcal{F} = \{ \mathsf{zero}, S \}$ and $\mathcal{P} = \emptyset$, but we have equality. The first theory T_0 is

$$\forall x. \mathsf{zero} \neq \mathsf{S}(x) \qquad \forall x \ y. \mathsf{S}(x) = \mathsf{S}(y) \to x = y$$

A model of this theory is a set A with a constant $a \in A$ and a function $f \in A \to A$ such that f is injective and a is not in the image of f.

A particular model \mathbb{N} is given by the set of natural numbers and $0 \in \mathbb{N}$ and the successor function s on \mathbb{N} .

The formulae $\delta_1 = \forall x.x \neq S(x), \ \delta_2 = \forall x.x \neq S(S(x)), \ldots$ are not provable in T_0 but are valid in the model $(\mathbb{N}, 0, s)$. The formula $\psi = \forall x.x = 0 \lor \exists y.(x = S(y))$ is not provable in $T_0, \delta_1, \delta_2, \ldots$ but is also valid in the model $(\mathbb{N}, 0, s)$.

It can be shown that we have $(\mathbb{N}, 0, s) \models \varphi$ iff $T_0, \delta_1, \delta_2, \dots, \psi \vdash \varphi$ and furthermore, there is an algorithm to decide $(\mathbb{N}, 0, s) \models \varphi$.

Presburger arithmetic

We add the binary function symbol (+) and add to T_0 the axioms

$$\forall x. \ x + \mathsf{zero} = x$$
 $\forall x \ y. \ x + \mathsf{S}(y) = \mathsf{S}(x + y)$

and the induction schema

$$\forall y_1 \dots y_m. \varphi(y_1, \dots, y_m, \mathsf{zero}) \land \forall x. (\varphi(y_1, \dots, y_m, x) \to (y_1, \dots, y_m, \mathsf{S}(x))) \to \forall z. \varphi(y_1, \dots, y_m, z)$$

The resulting theory PrA is called $Presburger\ arithmetic$. It can be shown that $(\mathbb{N}, 0, \mathbf{s}, +) \models \varphi$ iff $PrA \vdash \varphi$ and there is an algorithm to decide $(\mathbb{N}, 0, \mathbf{s}, +) \models \varphi$.

Presburger arithmetic

We add the binary function symbol (\cdot) and add to PrA the axioms for multiplication

$$\forall x. \ x \cdot \mathsf{zero} = \mathsf{zero} \qquad \forall x \ y. \ x \cdot \mathsf{S}(y) = x \cdot y + x$$

with the induction schema, where the formula $\varphi(y_1, \ldots, y_m, x)$ can also used multiplication. The resulting theory PA is called *Peano arithmetic*. It has been shown by Gödel that PA is *incomplete*: there is a formula φ such that $(\mathbb{N}, 0, \mathbf{s}, +, \cdot) \models \varphi$ but we don't have $PA \vdash \varphi$.

Furthermore $(\mathbb{N}, 0, \mathbf{s}, +, \cdot) \models \varphi$ is undecidable (there is no algorithm to decide $\mathbb{N} \models \varphi$) and there is no effective way to enumerate all sentences φ valid in the model $(\mathbb{N}, 0, \mathbf{s}, +, \cdot)$.

The decision problem

The decision problem (Hilbert-Ackermann 1928) is the problem of deciding if a sentence in a given language is provable or not.

More generally the problem is to decide if we have $\psi_1, \ldots, \psi_n \vdash \varphi$ or not.

There are special cases where this problem has a positive answer.

A general method is to apply the following remark: we have $\psi_1, \ldots, \psi_n \vdash \varphi$ iff the following theory $\psi_1, \ldots, \psi_n, \neg \varphi$ has no models. This follows from soundness and completeness.

Bernays-Schönfinkel decidable case

This is the particular case where \mathcal{F} has only *constant* symbols and all formulae $\psi_1, \ldots, \psi_n, \varphi$ are of the form $\forall y_1 \ldots y_m.\delta$ or $\exists y_1 \ldots y_m.\delta$ where δ is quantifier-free.

In this case the following algorithm, that I illustrate on some examples, gives a way to decide whether $\psi_1, \ldots, \psi_n, \neg \varphi$ has a model or not. (If it has a model, it always has a *finite* model.) In this way, we decide whether $\psi_1, \ldots, \psi_n \vdash \varphi$ holds or not.

We take the example

$$T_1 = \exists x. (P(x) \land \neg M(x)), \exists y. (M(y) \land \neg S(y)), \forall z. (\neg P(z) \lor S(z))$$

The first step is to eliminate the existential quantifiers by introducing constants

$$T_2 = P(a) \land \neg M(a), \ M(b) \land \neg S(b), \forall z.(\neg P(z) \lor S(z))$$

It should be clear that T_1 has a model iff T_2 has a model.

The second step is to eliminate the universal quantifiers by instantiating on all constants

$$T_3 = P(a) \land \neg M(a), \ M(b) \land \neg S(b), \ \neg P(a) \lor S(a), \ \neg P(b) \lor S(b)$$

In this way we find a model with two elements P(a), $\neg M(a)$, S(a), M(b), $\neg S(b)$, $\neg P(b)$.

This implies that $\exists x.(P(x) \land \neg M(x)), \exists y.(M(y) \land \neg S(y)) \vdash \exists z.(P(z) \land \neg S(z))$ is not valid.

Other examples

 $\forall x. \neg R(x,x) \vdash \forall x \ y. (R(x,y) \rightarrow \neg R(y,x))$ is not valid since we find a model of

$$T_1 = \forall x. \neg R(x, x), \exists x \ y. \ R(x, y) \land R(y, x)$$

by eliminating existentials

$$T_2 = \forall x. \neg R(x, x), \ R(a, b) \land R(b, a)$$

and then universals

$$T_3 = \neg R(a, a), \ \neg R(b, b), \ R(a, b) \land R(b, a)$$

and we get a counter-model with two elements.

On the other hand $\forall x \ y.(R(x,y) \to \neg R(y,x) \vdash \neg R(x,x))$ is valid, since if we try to find a model of

$$T_1 = \forall x \ y.(R(x,y) \rightarrow \neg R(y,x)), \ \exists x.R(x,x)$$

by eliminating existentials

$$T_2 = \forall x \ y.(R(x,y) \rightarrow \neg R(y,x)), \ R(a,a)$$

and then universals

$$T_3 = R(a, a) \rightarrow \neg R(a, a), R(a, a)$$

we should have R(a, a) and $\neg R(a, a)$ and we cannot find a counter-model.

Theory of cyclic order

(Not covered in the lecture, but a nice example of a theory and of the use of the Bernays-Schönfinkel algorithm.)

A cyclic order is a way to arrange a set of objects in a circle (examples: seven days in a week, twelve notes in the chromatic scale, ...). The language is $\mathcal{P} = \{S\}$ which is a ternary predicate symbol and the first 3 axioms are

$$\psi_1 = \forall x \ y \ z.S(x, y, z) \to S(y, z, x) \qquad \psi_2 = \forall x \ y \ z.S(x, y, z) \to \neg S(x, z, y)$$
$$\psi_3 = \forall x \ y \ z \ t.(S(x, y, z) \land S(x, z, t)) \to S(x, y, t)$$

One can then use the Bernays-Schönfinkel algorithm to show automatically that these axioms are *independent*: we don't have $\psi_1, \psi_2 \vdash \psi_3$ or $\psi_2, \psi_3 \vdash \psi_1$ or $\psi_3, \psi_1 \vdash \psi_2$.

The last axiom of the theory of cyclic order uses equality

$$\psi_4 = \forall x \ y \ z.(x \neq y \land y \neq z \land z \neq x) \rightarrow S(x, y, z) \lor S(x, z, y)$$

The extension of the Bernays-Schönfinkel algorithm to equality is possible by axiomatising the equality relation. (This was first done by Ramsey, 1928, by another method.)