Logic in Computer Science

For a given language \mathcal{F}, \mathcal{P}, a first-order theory is a set T of sentences (closed formulae) in this given language. The elements of T are also called axioms of T.

A model of T is a model \mathcal{M} of the given language such that $\mathcal{M} \models \psi$ for all sentences ψ in T.
$T \vdash \varphi$ means that we can find $\psi_{1}, \ldots, \psi_{n}$ in T such that $\psi_{1}, \ldots, \psi_{n} \vdash \varphi$.
$T \models \varphi$ means that $\mathcal{M} \models \varphi$ for all models \mathcal{M} of T.
The generalized form of soundness is that $T \vdash \varphi$ implies $T \models \varphi$ and completness is that $T \models \varphi$ implies $T \vdash \varphi$.

If T is a finite set $\psi_{1}, \ldots, \psi_{n}$ this follows from the usual statement of soundness ($\vdash \delta$ implies $\models \delta$) and completness $(\models \delta$ implies $\vdash \delta)$. Indeed, in this case, we have $T \vdash \varphi$ iff $\vdash\left(\psi_{1} \wedge \cdots \wedge \psi_{n}\right) \rightarrow \varphi$ and $T \models \varphi$ iff $\models\left(\psi_{1} \wedge \cdots \wedge \psi_{n}\right) \rightarrow \varphi$.

Theory of equivalence relations

The language is $\mathcal{P}=\{E\}$, binary relation, and $\mathcal{F}=\emptyset$. The axioms are

$$
\forall x . E(x, x) \quad \forall x y z .(E(x, z) \wedge E(y, z)) \rightarrow E(x, y)
$$

We can then show $T \vdash \forall x y . E(x, y) \rightarrow E(y, x)$ and $T \vdash \forall x y z .(E(x, y) \wedge E(y, z)) \rightarrow E(x, z)$.

Theory about orders

The theory of strict order. The language is $\mathcal{P}=\{R\}$, binary relation, and $\mathcal{F}=\emptyset$. The axioms are

$$
\forall x . \neg R(x, x) \quad \forall x y z .(R(x, y) \wedge R(y, z)) \rightarrow R(x, z)
$$

We can add equality and get the theory $T_{\text {lin }}$ of linear orders

$$
\forall x y .(x \neq y) \rightarrow(R(x, y) \vee R(y, x))
$$

Models are given by the usual order on $\mathbb{N}, \mathbb{Q}, \mathbb{R}$. The model of rationals $(\mathbb{Q},<)$ also satisfies

$$
\psi_{1}=\forall x \cdot \exists y \cdot R(x, y) \quad \psi_{2}=\forall x \cdot \exists y \cdot R(y, x) \quad \psi_{3}=\forall x y \cdot R(x, y) \rightarrow \exists z \cdot R(x, z) \wedge R(z, y)
$$

It can be shown that we have $(\mathbb{Q},<) \models \varphi$ iff $(\mathbb{R},<) \models \varphi$ iff $T_{\text {lin }}, \psi_{1}, \psi_{2}, \psi_{3} \vdash \varphi$ and furthermore, there is an algorithm to decide whether $(\mathbb{Q},<) \models \varphi$ holds or not.

Theory about arithmetic

The language is $\mathcal{F}=\{$ zero, $S\}$ and $\mathcal{P}=\emptyset$, but we have equality.
The first theory T_{0} is

$$
\forall x . \text { zero } \neq \mathrm{S}(x) \quad \forall x y \cdot \mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y
$$

A model of this theory is a set A with a constant $a \in A$ and a function $f \in A \rightarrow A$ such that f is injective and a is not in the image of f.

A particular model \mathbb{N} is given by the set of natural numbers and $0 \in \mathbb{N}$ and the successor function s on \mathbb{N}.

The formulae $\delta_{1}=\forall x . x \neq \mathrm{S}(x), \delta_{2}=\forall x . x \neq \mathrm{S}(\mathrm{S}(x)), \ldots$ are not provable in T_{0} but are valid in the model ($\mathbb{N}, 0, \mathrm{~s}$). The formula $\psi=\forall x \cdot x=0 \vee \exists y \cdot(x=\mathrm{S}(y))$ is not provable in $T_{0}, \delta_{1}, \delta_{2}, \ldots$ but is also valid in the model $(\mathbb{N}, 0, s)$.

It can be shown that we have $(\mathbb{N}, 0, \mathrm{~s}) \models \varphi$ iff $T_{0}, \delta_{1}, \delta_{2}, \ldots, \psi \vdash \varphi$ and furthermore, there is an algorithm to decide $(\mathbb{N}, 0, s) \models \varphi$.

Presburger arithmetic

We add the binary function symbol $(+)$ and add to T_{0} the axioms

$$
\forall x \cdot x+\text { zero }=x \quad \forall x y \cdot x+\mathrm{S}(y)=\mathrm{S}(x+y)
$$

and the induction schema

$$
\forall y_{1} \ldots y_{m} \cdot \varphi\left(y_{1}, \ldots, y_{m}, \text { zero }\right) \wedge \forall x \cdot\left(\varphi\left(y_{1}, \ldots, y_{m}, x\right) \rightarrow\left(y_{1}, \ldots, y_{m}, \mathrm{~S}(x)\right)\right) \rightarrow \forall z \cdot \varphi\left(y_{1}, \ldots, y_{m}, z\right)
$$

The resulting theory $\operatorname{Pr} A$ is called Presburger arithmetic. It can be shown that $(\mathbb{N}, 0, \mathrm{~s},+) \models \varphi$ iff $\operatorname{Pr} A \vdash \varphi$ and there is an algorithm to decide $(\mathbb{N}, 0, \mathrm{~s},+) \models \varphi$.

Presburger arithmetic

We add the binary function symbol (\cdot) and add to $\operatorname{Pr} A$ the axioms for multiplication

$$
\forall x \cdot x \cdot \text { zero }=\text { zero } \quad \forall x y \cdot x \cdot \mathrm{~S}(y)=x \cdot y+x
$$

with the induction schema, where the formula $\varphi\left(y_{1}, \ldots, y_{m}, x\right)$ can also used multiplication. The resulting theory $P A$ is called Peano arithmetic. It has been shown by Gödel that $P A$ is incomplete: there is a formula φ such that $(\mathbb{N}, 0, \mathrm{~s},+, \cdot) \models \varphi$ but we don't have $P A \vdash \varphi$.

Furthermore ($\mathbb{N}, 0, s,+, \cdot) \models \varphi$ is undecidable (there is no algorithm to decide $\mathbb{N} \models \varphi$) and there is no effective way to enumerate all sentences φ valid in the model $(\mathbb{N}, 0, s,+, \cdot)$.

The decision problem

The decision problem (Hilbert-Ackermann 1928) is the problem of deciding if a sentence in a given language is provable or not.

More generally the problem is to decide if we have $\psi_{1}, \ldots, \psi_{n} \vdash \varphi$ or not.
There are special cases where this problem has a positive answer.
A general method is to apply the following remark: we have $\psi_{1}, \ldots, \psi_{n} \vdash \varphi$ iff the following theory $\psi_{1}, \ldots, \psi_{n}, \neg \varphi$ has no models. This follows from soundness and completeness.

Bernays-Schönfinkel decidable case

This is the particular case where \mathcal{F} has only constant symbols and all formulae $\psi_{1}, \ldots, \psi_{n}, \varphi$ are of the form $\forall y_{1} \ldots y_{m}$. δ or $\exists y_{1} \ldots y_{m} . \delta$ where δ is quantifier-free.

In this case the following algorithm, that I illustrate on some examples, gives a way to decide whether $\psi_{1}, \ldots, \psi_{n}, \neg \varphi$ has a model or not. (If it has a model, it always has a finite model.) In this way, we decide whether $\psi_{1}, \ldots, \psi_{n} \vdash \varphi$ holds or not.

We take the example

$$
T_{1}=\exists x \cdot(P(x) \wedge \neg M(x)), \exists y \cdot(M(y) \wedge \neg S(y)), \forall z \cdot(\neg P(z) \vee S(z))
$$

The first step is to eliminate the existential quantifiers by introducing constants

$$
T_{2}=P(a) \wedge \neg M(a), M(b) \wedge \neg S(b), \forall z \cdot(\neg P(z) \vee S(z))
$$

It should be clear that T_{1} has a model iff T_{2} has a model.
The second step is to eliminate the universal quantifiers by instantiating on all constants

$$
T_{3}=P(a) \wedge \neg M(a), M(b) \wedge \neg S(b), \neg P(a) \vee S(a), \neg P(b) \vee S(b)
$$

In this way we find a model with two elements $P(a), \neg M(a), S(a), M(b), \neg S(b), \neg P(b)$.
This implies that $\exists x .(P(x) \wedge \neg M(x)), \exists y .(M(y) \wedge \neg S(y)) \vdash \exists z .(P(z) \wedge \neg S(z))$ is not valid.

Other examples

$\forall x . \neg R(x, x) \vdash \forall x y .(R(x, y) \rightarrow \neg R(y, x)$ is not valid since we find a model of

$$
T_{1}=\forall x . \neg R(x, x), \exists x y . R(x, y) \wedge R(y, x)
$$

by eliminating existentials

$$
T_{2}=\forall x . \neg R(x, x), \quad R(a, b) \wedge R(b, a)
$$

and then universals

$$
T_{3}=\neg R(a, a), \neg R(b, b), R(a, b) \wedge R(b, a)
$$

and we get a counter-model with two elements.
On the other hand $\forall x y .(R(x, y) \rightarrow \neg R(y, x) \vdash \neg R(x, x)$ is valid, since if we try to find a model of

$$
T_{1}=\forall x y \cdot(R(x, y) \rightarrow \neg R(y, x)), \exists x \cdot R(x, x)
$$

by eliminating existentials

$$
T_{2}=\forall x y \cdot(R(x, y) \rightarrow \neg R(y, x)), R(a, a)
$$

and then universals

$$
T_{3}=R(a, a) \rightarrow \neg R(a, a), R(a, a)
$$

we should have $R(a, a)$ and $\neg R(a, a)$ and we cannot find a counter-model.

Theory of cyclic order

(Not covered in the lecture, but a nice example of a theory and of the use of the Bernays-Schönfinkel algorithm.)

A cyclic order is a way to arrange a set of objects in a circle (examples: seven days in a week, twelve notes in the chromatic scale, ...). The language is $\mathcal{P}=\{S\}$ which is a ternary predicate symbol and the first 3 axioms are

$$
\begin{gathered}
\psi_{1}=\forall x y z . S(x, y, z) \rightarrow S(y, z, x) \quad \psi_{2}=\forall x y z \cdot S(x, y, z) \rightarrow \neg S(x, z, y) \\
\psi_{3}=\forall x y z t \cdot(S(x, y, z) \wedge S(x, z, t)) \rightarrow S(x, y, t)
\end{gathered}
$$

One can then use the Bernays-Schönfinkel algorithm to show automatically that these axioms are independent: we don't have $\psi_{1}, \psi_{2} \vdash \psi_{3}$ or $\psi_{2}, \psi_{3} \vdash \psi_{1}$ or $\psi_{3}, \psi_{1} \vdash \psi_{2}$.

The last axiom of the theory of cyclic order uses equality

$$
\psi_{4}=\forall x y z \cdot(x \neq y \wedge y \neq z \wedge z \neq x) \rightarrow S(x, y, z) \vee S(x, z, y)
$$

The extension of the Bernays-Schönfinkel algorithm to equality is possible by axiomatising the equality relation. (This was first done by Ramsey, 1928, by another method.)

