
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2016

Lecture 9
Ana Bove

April 27th 2016

Overview of today’s lecture:

Decision properties for RL;

Equivalence of RL;

Minimisation of automata.

Recap: Regular Languages

We can convert between FA and RE;

Hence both FA and RE accept/generate regular languages;

We use the Pumping lemma to show that a language is NOT regular;

RE are closed under:

Union, complement, intersection, difference, concatenation, closure;

Prefix, reversal;

Closure properties can be used both to prove that a language IS
regular or that a language is NOT regular.

April 27th 2016, Lecture 9 TMV027/DIT321 1/25

Decision Properties of Regular Languages

We want to be able to answer YES/NO to questions such as

Is this language empty?

Is string w in the language L?
Are these 2 languages equivalent?

In general languages are infinite so we cannot do a “manual” checking.

Instead we work with the finite description of the languages (DFA, NFA.
ǫ-NFA, RE).

Which description is most convenient depends on the property and on the language.

April 27th 2016, Lecture 9 TMV027/DIT321 2/25

Testing Emptiness of Regular Languages given FA

Given a FA for a language, testing whether the language is empty or not
amounts to checking if there is a path from the start state to a final state.

Let D = (Q,Σ, δ, q0,F) be a DFA.

Recall the notion of accessible states: Acc = {δ̂(q0, x) | x ∈ Σ∗} .

Proposition: Given D as above, then
D ′ = (Q ∩Acc,Σ, δ|Q∩Acc, q0,F ∩Acc) is a DFA such that L(D) = L(D ′).

In particular, L(D) = ∅ if F ∩ Acc = ∅.

(Actually, L(D) = ∅ iff F ∩ Acc = ∅ since if δ̂(q0, x) ∈ F then δ̂(q0, x) ∈ F ∩ Acc.)

April 27th 2016, Lecture 9 TMV027/DIT321 3/25

Testing Emptiness of Regular Languages given FA

A recursive algorithm to test whether a state is accessible/reachable is as
follows:

Base case: The start state q0 is reachable from q0.

Recursive step: If q is reachable from q0 and there is an arc from q to p
(with any label, including ǫ) then p is also reachable from q0.

(This algorithm is an instance of graph-reachability.)

If the set of reachable states contains at least one final state then the RL
is NOT empty.

Exercise: Program this!

April 27th 2016, Lecture 9 TMV027/DIT321 4/25

Testing Emptiness of Regular Languages given RE

Given a RE for the language we can instead perform the following test:

Base cases: ∅ denotes the empty language while ǫ and a (any symbol from

the alphabet) do not.

Recursive step: Let R be our RE.

If R = R1 + R2 then L(R) is empty iff both L(R1) and
L(R2) are empty;
If R = R1R2 then L(R) is empty iff either L(R1) or
L(R2) is empty;
If R = R∗

1 is never empty since it always contains the
word ǫ.

April 27th 2016, Lecture 9 TMV027/DIT321 5/25

Functional Representation of Testing Emptiness for RE

data RExp a = Empty | Epsilon | Atom a |

Plus (RExp a) (RExp a) |

Concat (RExp a) (RExp a) |

Star (RExp a)

isEmpty :: RExp a -> Bool

isEmpty Empty = True

isEmpty (Plus e1 e2) = isEmpty e1 && isEmpty e2

isEmpty (Concat e1 e2) = isEmpty e1 || isEmpty e2

isEmpty _ = False

April 27th 2016, Lecture 9 TMV027/DIT321 6/25

Testing Membership in Regular Languages

Given a RL L and a word w over the alphabet of L, is w ∈ L ?

When L is given by a FA we can simply run the FA with the input w and
see if the word is accepted by the FA.

We have seen an algorithm simulating the running of a DFA (and you have implemented

algorithms simulating the running of NFA and ǫ-NFA, right? :-).

Using derivatives (see exercises 4.2.3 and 4.2.5) there is a nice algorithm checking

membership on RE.

Let M = L(R) and w = a1 . . . an.

Let a\R = DaR = {x | ax ∈ M} (in the book
dM
da

).

DwR = Dan (. . . (Da1R) . . .).

It can then be shown that w ∈ M iff ǫ ∈ DwR.

April 27th 2016, Lecture 9 TMV027/DIT321 7/25

Other Testing Algorithms on Regular Expressions

Tests if a RE generates ǫ.

hasEpsilon :: RExp a -> Bool

hasEpsilon Epsilon = True

hasEpsilon (Star _) = True

hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2

hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2

hasEpsilon _ = False

April 27th 2016, Lecture 9 TMV027/DIT321 8/25

Other Testing Algorithms on Regular Expressions

Tests if R generates at most ǫ: L(R) ⊆ {ǫ}.

atMostEps :: RExp a -> Bool

atMostEps Empty = True

atMostEps Epsilon = True

atMostEps (Atom _) = False

atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2

atMostEps (Concat e1 e2) = isEmpty e1 || isEmpty e2 ||

(atMostEps e1 && atMostEps e2)

atMostEps (Star e) = atMostEps e

April 27th 2016, Lecture 9 TMV027/DIT321 9/25

Other Testing Algorithms on Regular Expressions

Tests if a regular expression generates an infinite language.

infinite :: RExp a -> Bool

infinite (Star e) = not (atMostEps e)

infinite (Plus e1 e2) = infinite e1 || infinite e2

infinite (Concat e1 e2) = (infinite e1 && notIsEmpty e2) ||

(notIsEmpty e1 && infinite e2)

where notIsEmpty e = not (isEmpty e)

infinite _ = False

April 27th 2016, Lecture 9 TMV027/DIT321 10/25

Testing Equivalence of Regular Languages

We have seen how one can prove that 2 RE are equal, hence the languages
they represent are equivalent (but this is not an easy process).

We will see now how to test when 2 DFA describe the same language.

April 27th 2016, Lecture 9 TMV027/DIT321 11/25

Testing Equivalence of States in DFA

How to answer the question “do states p and q behave in the same way”?

Definition: We say that states p and q are equivalent if for all w , δ̂(p,w)
is an accepting state iff δ̂(q,w) is an accepting state.

Note: We do not require that δ̂(p,w) = δ̂(q,w)!

Definition: If p and q are not equivalent, then they are distinguishable.

That is, there exists at least one w such that one of δ̂(p,w) and δ̂(q,w) is
an accepting state and the other is not.

April 27th 2016, Lecture 9 TMV027/DIT321 12/25

Example: Identifying Distinguishable Pairs

Let us find the distinguishable pairs in the following DFA.

q0

q1

q2

q3

q4

q5

a

b

a

b

a

b

a, b

a, b

a, b
q0 q1 q2 q3 q4

q5 X X X X X
q4 X X X
q3 X X X
q2 X
q1 X

If p is accepting and q is not, then the word ǫ distinguish them.

δ(q1, a) = q3 and δ(q5, a) = q5. Since (q3, q5) is distinguishable so must be (q1, q5).

What about δ(q2, a) and δ(q5, a)?

What about the pairs (q0, q3) and (q0, q4) with the input a?

Finally, let us consider the pairs (q3, q4) and (q1, q2).

April 27th 2016, Lecture 9 TMV027/DIT321 13/25

Table-Filling Algorithm

This algorithm finds pairs of states that are distinguishable.

Any 2 states that we do not find distinguishable are equivalent (see slide 16).

Let D = (Q,Σ, δ, q0,F) be a DFA.
The table-filling algorithm is as follows:

Base case: If p is an accepting state and q is not, then (p, q) are
distinguishable.

Recursive step: Let p and q be such that for some a, δ(p, a) = r and
δ(q, a) = s with (r , s) known to be distinguishable.
Then (p, q) are also distinguishable.

(If w distinguishes r and s then aw must distinguish p and q since

δ̂(p, aw) = δ̂(r ,w) and δ̂(q, aw) = δ̂(s,w).)

April 27th 2016, Lecture 9 TMV027/DIT321 14/25

Example: Table-Filling Algorithm

Let us fill the table of distinguishable pairs in the following DFA.

q0 q1 q2 q3 q4 q5
a a a a a

a
q0 q1 q2 q3 q4

q5 X X X X
q4 X X X
q3 X X
q2 X X
q1 X

Let us consider the base case of the algorithm.

Let us consider the pair (q0, q5).

Let us consider the pair (q0, q2).

Let us consider (q2, q3) and (q3, q5).

Finally, let us consider the remaining pairs.

April 27th 2016, Lecture 9 TMV027/DIT321 15/25

Equivalent States

Theorem: Let D = (Q,Σ, δ, q0,F) be a DFA. If 2 states are not
distinguishable by the table-filling algorithm then the states are equivalent.

Proof: Let us assume there is a bad pair (p, q) such that p and q are distinguishable
but the table-filling algorithm doesn’t find them so.

If there are bad pairs, let (p′, q′) be a bad pair with the shortest string w = a1a2 . . . an
that distinguishes 2 states.

Note w is not ǫ otherwise (p′, q′) is found distinguishable in the base step.

Let δ(p′, a1) = r and δ(q′, a1) = s. States r and s are distinguished by a2 . . . an since
this string takes r to δ̂(p′,w) and s to δ̂(q′,w).

Now string a2 . . . an distinguishes 2 states and is shorter than w which is the shortest
string that distinguishes a bad pair. Then (r , s) cannot be a bad pair and hence it must
be found distinguishable by the algorithm.

Then the inductive step should have found (p′, q′) distinguishable.

This contradicts the assumption that bad pairs exist.

April 27th 2016, Lecture 9 TMV027/DIT321 16/25

Testing Equivalence of Regular Languages

We can use the table-filling algorithm to test equivalence of regular
languages.

Let M and N be 2 regular languages.
Let DM = (QM,Σ, δM, qM,FM) and DN = (QN ,Σ, δN , qN ,FN) be
their corresponding DFA.

Let us assume QM ∩ QN = ∅ (easy to obtain by renaming).

Construct D = (QM ∪ QN ,Σ, δ,−,FM ∪ FN) (initial state irrelevant).
δ is the union of δM and δN as a function.

One should now check if the pair (qM, qN) is equivalent.
If so, a string is accepted by DM iff it is accepted by DN .
Hence M and N are equivalent languages.
April 27th 2016, Lecture 9 TMV027/DIT321 17/25

Equivalence of States: An Equivalence Relation

The relation “state p is equivalent to state q”, denoted p ≈ q, is an
equivalence relation.

Reflexive: ∀p. p ≈ p;

Symmetric: ∀p q. p ≈ q ⇒ q ≈ p;

Transitive: ∀p q r . p ≈ q ∧ q ≈ r ⇒ p ≈ r .
(See Theorem 4.23 for a proof of the transitivity part.)

Exercise: Prove these properties!

April 27th 2016, Lecture 9 TMV027/DIT321 18/25

Partition of States

Let D = (Q,Σ, δ, q0,F) be a DFA.

The table-filling algo. defines the equivalence of states relation over Q.

This is an equivalence relation so we can define the quotient Q/≈.

This quotient gives us a partition into classes of mutually equivalent states.

Example: The partition for the example in slide 13 is the following (note the singleton
classes!)

{q0} {q1, q2} {q3, q4} {q5}

Example: The partition for the example in slide 15 is the following

{q0, q3} {q1, q4} {q2, q5}

Note: Classes might also have more than 2 elements.
April 27th 2016, Lecture 9 TMV027/DIT321 19/25

Example: Minimisation of DFA

How to use the partition into equivalent states to minimise the DFA in
slide 13?

q0 q1q2 q3q4 q5
a, b a, b a, b

a, b

Example: The minimal DFA corresponding to the DFA in slide 15 is

q0q3 q1q4 q2q5
a a

a

Exercise: Program the minimisation algorithm!

April 27th 2016, Lecture 9 TMV027/DIT321 20/25

Minimisation of DFA: The Algorithm

Let D = (Q,Σ, δ, q0,F) be a DFA.

Q/≈ allows to build an equivalent DFA with the minimum nr. of states.

This minimum DFA is unique (modulo the name of the states).

The algorithm for building the minimum DFA D ′ = (Q ′,Σ, δ′, q′0,F
′) is:

1 Eliminate any non accessible state;

2 Partition the remaining states using the table-filling algorithm;

3 Use each block as a single state in the new DFA;

4 The start state is the block containing q0;

5 The final states are all those blocks containing elements in F ;

6 δ′(S , a) = T if given any q ∈ S , δ(q, a) = p for some p ∈ T .
(Actually, the partition guarantees that ∀q ∈ S . ∃p ∈ T . δ(q, a) = p.)

April 27th 2016, Lecture 9 TMV027/DIT321 21/25

Does the Minimisation Algorithm Give a Minimal DFA?

Given a DFA D, the minimisation algorithm gives us a DFA D ′ with the
minimal number of states with respect to those of D.

But, could there exist a DFA A completely unrelated to D, also accepting
the same language and with less states than those in D ′?

Section 4.4.4 in the book shows by contradiction that A cannot exist.

Theorem: If D is a DFA and D ′ the DFA constructed from D with the
minimisation algorithm described before, then D ′ has as few states as any
DFA equivalent to D.

April 27th 2016, Lecture 9 TMV027/DIT321 22/25

Can we Minimise a NFA?

One could find a smaller NFA, but not with this algorithm.

Example: Consider the following NFA
q0 q1

q2

0

1 0

0, 1

The table-filling algorithm does not find equivalent states in this case.

However, the following is a smaller and equivalent NFA for the language.

q0 q1
0

0, 1

April 27th 2016, Lecture 9 TMV027/DIT321 23/25

Learning Outcome of the Course (revisited)

After completion of this course, the student should be able to:

Explain and manipulate the different concepts in automata theory and formal
languages;

Have a clear understanding about the equivalence between (non-)deterministic
finite automata and regular expressions;

Acquire a good understanding of the power and the limitations of regular
languages and context-free languages;

Prove properties of languages, grammars and automata with rigorously formal
mathematical methods;

Design automata, regular expressions and context-free grammars accepting or
generating a certain language;

Describe the language accepted by an automata, or generated by a regular
expression or a context-free grammar;

Simplify automata and context-free grammars;

Determine if a certain word belongs to a language;

Define Turing machines performing simple tasks;

Differentiate and manipulate formal descriptions of languages, automata and
grammars.

April 27th 2016, Lecture 9 TMV027/DIT321 24/25

Overview of Next Lecture

Sections 5–5.2.2:

Context-free grammars;

Derivations;

Parse trees;

Proofs in grammars.

April 27th 2016, Lecture 9 TMV027/DIT321 25/25

