Finite Automata Theory and Formal Languages

TMV027/DIT321- LP4 2016

Lecture 7
Ana Bove

April 21st 2016

Overview of today's lecture:

- Regular expressions;
- Algebraic laws for regular expressions;
- Equivalence between FA and RE: from FA to RE.

Recap: Non-deterministic Finite Automata (with ϵ-Transitions)

- Product of NFA as for DFA, accepting intersection of languages;
- Union of languages comes naturally, complement not so "immediate";
- By allowing ϵ-transitions we obtain ϵ-NFA:
- Defined by a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$;
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow \mathcal{P o w}(Q)$;
- ECLOSE needed for $\hat{\delta}$;
- Accept set of words x such that $\hat{\delta}\left(q_{0}, x\right) \cap F \neq \emptyset$;
- Given a ϵ-NFA E we can convert it to a DFA D such that $\mathcal{L}(E)=\mathcal{L}(D) ;$
- Hence, also accept the so called regular language.

Regular Expressions

Regular expressions (RE) are an "algebraic" way to denote languages.
RE are a simple way to express the strings in a language.

Example: grep command in UNIX (K. Thompson) takes a (variation) of a RE as input.

We will show that RE are as expressive as DFA and hence, they define all and only the regular languages.

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ, we inductively define the regular expressions over Σ as follows:

Base cases: - The constants \emptyset and ϵ are RE;

- If $a \in \Sigma$ then a is a RE.

Inductive steps: Given the RE R and S, we define the following RE:

- $R+S$ and $R S$ are RE;
- R^{*} is RE.

The precedence of the operands is the following:

- The closure operator * has the highest precedence;
- Next comes concatenation;
- Finally, comes the operator +;
- We use parentheses (, to change the precedence.
(Compare with exponentiation, multiplication and addition on numbers.)

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF (Backus-Naur Form), for $a \in \Sigma$:

$$
R::=\emptyset|\epsilon| a|R+R| R R \mid R^{*}
$$

alternatively

$$
R, S::=\emptyset|\epsilon| a|R+S| R S \mid R^{*}
$$

Note: BNF is a way to declare the syntax of a language.
It is very useful when describing context-free grammars and in particular the syntax of (big parts of) most programming languages.

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a | Plus (RExp a) (RExp a) | Concat (RExp a) (RExp a) | Star (RExp a)

For example the expression $b+(b c)^{*}$ is given as Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

Language Defined by the Regular Expressions

Definition: Given a RE R, the language $\mathcal{L}(R)$ generated/defined by it is defined by recursion on the expression:

Base cases: $\quad \circ \mathcal{L}(\emptyset)=\emptyset$;

$$
\begin{aligned}
& \mathcal{L}(\epsilon)=\{\epsilon\} ; \\
& \text { Given } a \in \Sigma, \mathcal{L}(a)=\{a\} \text {. }
\end{aligned}
$$

Recursive cases:

$$
\begin{aligned}
& \quad \mathcal{L}(R+S)=\mathcal{L}(R) \\
& \quad \mathcal{L}(R S)=\mathcal{L}(R) \mathcal{L}(S) \\
& \\
& \mathcal{L}\left(R^{*}\right)=\mathcal{L}(R)^{*}
\end{aligned}
$$

Note: $x \in \mathcal{L}(R)$ iff x is generated by R.
Notation: We write $x \in R$ or $x \in \mathcal{L}(R)$ indistinctly.

Example of Regular Expressions

Let $\Sigma=\{0,1\}$:

- $0^{*}+1^{*}=\{\epsilon, 0,00,000, \ldots\} \cup\{\epsilon, 1,11,111, \ldots\}$
- $(0+1)^{*}=\{\epsilon, 0,1,00,01,10,11,000,001,010,011,100,101, \ldots\}$
- $(01)^{*}=\{\epsilon, 01,0101,010101, \ldots\}$
- $(000)^{*}=\{\epsilon, 000,000000,000000000, \ldots\}$
- $01^{*}+1=\{0,01,011,0111, \ldots\} \cup\{1\}$
- $\left(\left(0\left(1^{*}\right)\right)+1\right)=\{0,01,011,0111, \ldots\} \cup\{1\}$
- $(01)^{*}+1=\{\epsilon, 01,0101,010101, \ldots\} \cup\{1\}$
- $(\epsilon+1)(01)^{*}(\epsilon+0)=(01)^{*}+1(01)^{*}+(01)^{*} 0+1(01)^{*} 0$
- $(01)^{*}+1(01)^{*}+(01)^{*} 0+1(01)^{*} 0$

What do they mean? Are there expressions that are equivalent?

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T :

Idempotent: $\quad R+R=R$
Commutative: $\quad R+S=S+R$
Associative: $R+(S+T)=(R+S)+T$
In general, $R S \neq S R$
Distributive: $R(S+T)=R S+R T$
$R(S T)=(R S) T$
Identity: $R+\emptyset=\emptyset+R=R$
$(S+T) R=S R+T R$
Annihilator:

$$
\begin{aligned}
& R \emptyset=\emptyset R=\emptyset \\
& \emptyset^{*}=\epsilon^{*}=\epsilon \\
& R ?=\epsilon+R \\
& R^{+}=R R^{*}=R^{*} R \\
& R^{*}=\left(R^{*}\right)^{*}=R^{*} R^{*}=\epsilon+R^{+}
\end{aligned}
$$

Note: Compare (some of) these laws with those for sets on slide 14 lecture 2.

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

- Shifting rule: $R(S R)^{*}=(R S)^{*} R$
- Denesting rule: $\left(R^{*} S\right)^{*} R^{*}=(R+S)^{*}$

Note: By the shifting rule we also get $R^{*}\left(S R^{*}\right)^{*}=(R+S)^{*}$

- Variation of the denesting rule: $\left(R^{*} S\right)^{*}=\epsilon+(R+S)^{*} S$

Note: Not always trivial to apply these rules...

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that $a^{*} b\left(c+d a^{*} b\right)^{*}=\left(a+b c^{*} d\right)^{*} b c^{*}$:

$$
\begin{array}{ll}
a^{*} b\left(c+d a^{*} b\right)^{*}=a^{*} b\left(c^{*} d a^{*} b\right)^{*} c^{*} & \text { by denesting }\left(R=c, S=d a^{*} b\right) \\
a^{*} b\left(c^{*} d a^{*} b\right)^{*} c^{*}=\left(a^{*} b c^{*} d\right)^{*} a^{*} b c^{*} & \text { by shifting }\left(R=a^{*} b, S=c^{*} d\right) \\
\left(a^{*} b c^{*} d\right)^{*} a^{*} b c^{*}=\left(a+b c^{*} d\right)^{*} b c^{*} & \text { by denesting }\left(R=a, S=b c^{*} d\right)
\end{array}
$$

Example: The set of all words with no substring of more than two adjacent 0 's is $(1+01+001)^{*}(\epsilon+0+00)$. Now,

$$
\begin{aligned}
(1+ & 01+001)^{*}(\epsilon+0+00) & & \\
& =((\epsilon+0)(\epsilon+0) 1)^{*}(\epsilon+0)(\epsilon+0) & & \text { by distributivity } \\
& =(\epsilon+0)(\epsilon+0)(1(\epsilon+0)(\epsilon+0))^{*} & & \text { by shifting } \\
& =(\epsilon+0+00)(1+10+100)^{*} & & \text { by distributivity }
\end{aligned}
$$

Then $(1+01+001)^{*}(\epsilon+0+00)=(\epsilon+0+00)(1+10+100)^{*}$

Equality of Regular Expressions

Recall: RE are a way to denote languages.
Then, for RE R and $S, R=S$ actually means $\mathcal{L}(R)=\mathcal{L}(S)$.
Hence we can prove the equality of RE in the same way we can prove the equality of languages!

Example: Let us show that $R^{*}=R^{*} R^{*}$. Let $\mathcal{L}=\mathcal{L}(R)$.
$\mathcal{L}^{*} \subseteq \mathcal{L}^{*} \mathcal{L}^{*}$ since $\epsilon \in \mathcal{L}^{*}$.
Conversely, if $\mathcal{L}^{*} \mathcal{L}^{*} \subseteq \mathcal{L}^{*}$ then $x=x_{1} x_{2}$ with $x_{1} \in \mathcal{L}^{*}$ and $x_{2} \in \mathcal{L}^{*}$.
If $x_{1}=\epsilon$ or $x_{2}=\epsilon$ then it is clear that $x \in \mathcal{L}^{*}$.
Otherwise $x_{1}=u_{1} u_{2} \ldots u_{n}$ with $u_{i} \in \mathcal{L}$ and $x_{2}=v_{1} v_{2} \ldots v_{m}$ with $v_{j} \in \mathcal{L}$.
Then $x=x_{1} x_{2}=u_{1} u_{2} \ldots u_{n} v_{1} v_{2} \ldots v_{m}$ is in \mathcal{L}^{*}.

Proving Algebraic Laws for Regular Expressions

In general, given the RE R and S we can prove the law $R=S$ as follows:
(1) Convert R and S into concrete regular expressions C and D, respectively, by replacing each variable in the RE R and S by (different) concrete symbols.

Example: $R(S R)^{*}=(R S)^{*} R$ can be converted into $a(b a)^{*}=(a b)^{*} a$.
(2) Prove or disprove whether $\mathcal{L}(C)=\mathcal{L}(D)$. If $\mathcal{L}(C)=\mathcal{L}(D)$ then $R=S$ is a true law, otherwise it is not.

Example: We can prove the shifting law by induction: $\forall n \in \mathbb{N} . a(b a)^{n}=(a b)^{n} a$.

Theorem: The above procedure correctly identifies the true laws for $R E$.
Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the Denesting Rule

We can state $\left(R^{*} S\right)^{*} R^{*}=(R+S)^{*}$ by proving $\mathcal{L}\left(\left(a^{*} b\right)^{*} a^{*}\right)=\mathcal{L}\left((a+b)^{*}\right)$:
\subseteq : Let $x \in\left(a^{*} b\right)^{*} a^{*}$, then $x=v w$ with $v \in\left(a^{*} b\right)^{*}$ and $w \in a^{*}$.
By induction on v. If $v=\epsilon$ we are done.
Otherwise $v=a v^{\prime}$ or $v=b v^{\prime}$.
In both cases $v^{\prime} \in\left(a^{*} b\right)^{*}$ hence by $\mathrm{IH} v^{\prime} w \in(a+b)^{*}$ and so is $v w$.
?: Let $x \in(a+b)^{*}$.
By induction on x. If $x=\epsilon$ then we are done.
Otherwise $x=x^{\prime} a$ or $x=x^{\prime} b$ and $x^{\prime} \in(a+b)^{*}$.
By IH $x^{\prime} \in\left(a^{*} b\right)^{*} a^{*}$ and then $x^{\prime}=v w$ with $v \in\left(a^{*} b\right)^{*}$ and $w \in a^{*}$.
If $x^{\prime} a=v(w a) \in\left(a^{*} b\right)^{*} a^{*}$ since $v \in\left(a^{*} b\right)^{*}$ and $(w a) \in a^{*}$.
If $x^{\prime} b=(v(w b)) \epsilon \in\left(a^{*} b\right)^{*} a^{*}$ since $v(w b) \in\left(a^{*} b\right)^{*}$ and $\epsilon \in a^{*}$.

Regular Languages and Regular Expressions

Theorem: If \mathcal{L} is a regular language then there exists a $R E R$ such that $\mathcal{L}=\mathcal{L}(R)$.

Proof: Recall that each regular language has a FA that recognises it.
We shall construct a RE from such automaton.

We shall see 2 ways of constructing a RE from a FA:

- Eliminating states (section 3.2.2);
- By solving a linear equation system using Arden's Lemma. (OBS: not in the book!)

From FA to RE: Eliminating States in an Automaton A
Let the FA A be:

From FA to RE: Eliminating State s in A

From FA to RE: Eliminating State s in A

When we eliminate the state s, all the paths that went through s do not longer exists!

To preserve the language of the automaton we must include, on an arc that goes directly from q to p, the labels of the paths that went from q to p passing through s.

Labels now are not just symbols but (possible an infinite number of) strings: hence we will use RE as labels.

From FA to RE: Eliminating States in A

For each accepting state q we eliminate states until we have q_{0} and q left. For each accepting state q we have 2 cases: $q_{0}=q$ or $q_{0} \neq q$.

If $q_{0}=q:$

The expression is R^{*}.

If $q_{0} \neq q:$

The expression is $\left(R+S U^{*} T\right)^{*} S U^{*}$.

The final RE is the sum of the expressions derived for each final state.

Example: RE Representing Gilbreath's Principle

Recall:

Observe: Eliminating q is trivial. Eliminating $q_{1} q_{3}$ and $q_{2} q_{4}$ is also easy.

Example: RE Representing Gilbreath's Principle

After eliminating $q, q_{1} q_{3}$ and $q_{2} q_{4}$ we get:

- RE when final state is $q_{0} q_{3} q_{4} q_{5}$:

$$
(R B+B R)(R B+B R)^{*}=(R B+B R)^{+}
$$

- RE when final state is $q_{2} q_{4} q_{5}: \quad(R B+B R)(R B)^{*} B\left(R(R B)^{*} B\right)^{*}$
- RE when final state is $q_{1} q_{3} q_{5}:(R B+B R)(B R)^{*} R\left(B(B R)^{*} R\right)^{*}$

Example: RE Representing Gilbreath's Principle

The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

$$
\begin{aligned}
& (R B+B R)(R B)^{*} B\left(R(R B)^{*} B\right)^{*}=(R B+B R)(R B)^{*}\left(B R(R B)^{*}\right)^{*} B \text { by shifting } \\
& =(R B+B R)(R B+B R)^{*} B
\end{aligned} \quad \text { by the shifted-denesting rule }
$$

Similarly $(R B+B R)(B R)^{*} R\left(B(B R)^{*} R\right)^{*}=(R B+B R)^{+} R$.

Hence the final RE is

$$
(R B+B R)^{+}+(R B+B R)^{+} B+(R B+B R)^{+} R
$$

which is equivalent to

$$
(R B+B R)^{+}(\epsilon+B+R)
$$

From FA to RE: Linear Equation System

To any FA we associate a system of equations with REs as solution.

To every state q_{i} we associate a variable E_{i}.

Each E_{i} represents the set $\left\{x \in \Sigma^{*} \mid \hat{\delta}\left(q_{i}, x\right) \in F\right\}$ (for DFA).
Then E_{0} represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each variable E_{i}.

The solution for E_{0} is the $R E$ generating the same language that is accepted by the FA.

From FA to RE: Constructing the Linear Equation System
Consider a state q_{i} and all the transactions coming out of it:

> If there is no arrow coming out of q_{i} then $E_{i}=\emptyset$ if q_{i} is not final or $E_{i}=\epsilon$ if q_{i} is final

Here we have the equation

$$
E_{i}=a_{i 1} E_{1}+\ldots+a_{i j} E_{j}+\ldots+a_{i n} E_{n}
$$

If q_{i} is final then we add ϵ

$$
E_{i}=\epsilon+a_{i 1} E_{1}+\ldots+a_{i j} E_{j}+\ldots+a_{i n} E_{n}
$$

From FA to RE: Solving the Linear Equation System

Lemma: (Arden) A solution to $X=R X+S$ is $X=R^{*} S$. Furthermore, if $\epsilon \notin \mathcal{L}(R)$ then this is the only solution to the equation $X=R X+S$.

Proof: (sketch) We have that $R^{*}=R R^{*}+\epsilon$.
Hence $R^{*} S=R R^{*} S+S$ and then $X=R^{*} S$ is a solution to $X=R X+S$.

One should also prove that:

- Any solution to $X=R X+S$ contains at least $R^{*} S$;
- If $\epsilon \notin \mathcal{L}(R)$ then $R^{*} S$ is the only solution to the equation $X=R X+S$ (that is, no solution is "bigger" than $R^{*} S$).

See for example Theorem 6.1, pages 185-186 of Theory of Finite Automata, with an introduction to formal languages by John Carroll and Darrell Long, Prentice-Hall International Editions.

Example: RE Representing Gilbreath's Principle

We obtain the following system of equations (see slide 19):

$$
\begin{array}{ll}
E_{0}=R E_{13}+B E_{24} & E_{0345}=\epsilon+B E_{245}+R E_{135} \\
E_{13}=B E_{0345}+R E_{q} & E_{245}=\epsilon+R E_{0345}+B E_{q} \\
E_{24}=R E_{0345}+B E_{q} & E_{135}=\epsilon+B E_{0345}+R E_{q} \\
& E_{q}=(B+R) E_{q}
\end{array}
$$

Since $E_{q}=(B+R)^{*} \emptyset=\emptyset$, this can be simplified to:

$$
\begin{array}{ll}
E_{0}=R E_{13}+B E_{24} & E_{0345}=\epsilon+B E_{245}+R E_{135} \\
E_{13}=B E_{0345} & E_{245}=\epsilon+R E_{0345} \\
E_{24}=R E_{0345} & E_{135}=\epsilon+B E_{0345}
\end{array}
$$

Example: RE Representing Gilbreath's Principle

And further to:

$$
\begin{aligned}
& E_{0}=(R B+B R) E_{0345} \\
& E_{0345}=(R B+B R) E_{0345}+\epsilon+B+R
\end{aligned}
$$

Then a solution to E_{0345} is

$$
(R B+B R)^{*}(\epsilon+B+R)
$$

and the RE which is the solution to the problem is

$$
(R B+B R)(R B+B R)^{*}(\epsilon+B+R)
$$

or

$$
(R B+B R)^{+}(\epsilon+B+R)
$$

Example: Eliminating States

Consider the automaton D

By eliminating states the expression is

$$
a^{*} b\left(c+d a^{*} b\right)^{*}
$$

Consider the automaton D^{\prime}

By eliminating states the expression is

$$
\left(a+b c^{*} d\right)^{*} b c^{*}
$$

But intuitively these automata are equivalent...

Example: Linear Equation System

The linear equations corresponding to the automaton D^{\prime} are

$$
E_{0}=a E_{0}+b E_{1} \quad E_{1}=\epsilon+c E_{1}+d E_{0}
$$

The resulting RE depends on the order we solve the system.

If we eliminate E_{1} first we get $E_{0}=\left(a+b c^{*} d\right)^{*} b c^{*}$.
If we eliminate E_{0} first we get $E_{0}=a^{*} b\left(c+d a^{*} b\right)^{*}$.

It should be that $a^{*} b\left(c+d a^{*} b\right)^{*}=\left(a+b c^{*} d\right)^{*} b c^{*}!$ (see proof in slide 10.)

Exercise: What RE do we obtain for the automaton D ?

Overview of Next Lecture

Sections 3.2.3, 4-4.2.1:

- Equivalence between FA and RE: from RE to FA;
- Pumping Lemma for RL;
- Closure properties of RL.

