Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2016

Lecture 6 Ana Bove

April 18th 2016

Overview of today's lecture:

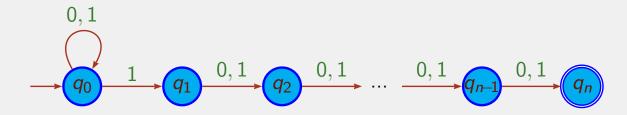
- More on NFA;
- NFA with ϵ -Transitions;
- Equivalence between DFA and ϵ -NFA;

Recap: Non-deterministic Finite Automata

- Defined by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$;
- Why "non-deterministic"?;
- $\delta: Q \times \Sigma \to \mathcal{P}ow(Q)$;
- Easier to define for some problems;
- Accept set of words x such that $\hat{\delta}(q_0,x) \cap F \neq \emptyset$;
- ullet Given a NFA N we apply the subset construction to get a DFA D ...
- ... such that $\mathcal{L}(N) = \mathcal{L}(D)$;
- Hence, NFA also accept the so called regular language.

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below has at least 2ⁿ states:



This NFA recognises strings over $\{0,1\}$ such that the *n*th symbol from the end is a 1.

Proof: Let $\mathcal{L}_n = \{x1u \mid x \in \Sigma^*, u \in \Sigma^{n-1}\}$ and $D = (Q, \Sigma, \delta, q_0, F)$ a DFA.

We want to show that if $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

A Bad Case for the Subset Construction (Cont.)

Lemma: If $\Sigma = \{0,1\}$ and $|Q| < 2^n$ then there exist $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ such that $\hat{\delta}(q_0, x0u) = \hat{\delta}(q_0, y1v)$.

Proof: Let us define a function $h: \Sigma^n \to Q$ such that $h(z) = \hat{\delta}(q_0, z)$.

h cannot be *injective* because $|Q| < 2^n = |\Sigma^n|$.

So h sends 2 different words to the same image: $a_1 \dots a_n \neq b_1 \dots b_n$ but

$$h(a_1 \ldots a_n) = \hat{\delta}(q_0, a_1 \ldots a_n) = \hat{\delta}(q_0, b_1 \ldots b_n) = h(b_1 \ldots b_n)$$

Let us assume that $a_i = 0$ and $b_i = 1$.

Let
$$x = a_1 \dots a_{i-1}$$
, $y = b_1 \dots b_{i-1}$, $u = a_{i+1} \dots a_n 0^{i-1}$, $v = b_{i+1} \dots b_n 0^{i-1}$.

Hence (recall that for a DFA, $\hat{\delta}(q, zw) = \hat{\delta}(\hat{\delta}(q, z), w)$):

$$\hat{\delta}(q_0, x 0 u) = \hat{\delta}(q_0, a_1 \dots a_n 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, a_1 \dots a_n), 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, b_1 \dots b_n), 0^{i-1}) = \hat{\delta}(q_0, b_1 \dots b_n 0^{i-1}) = \hat{\delta}(q_0, y 1 v)$$
(6, Lecture 6 TMV027/DIT321

A Bad Case for the Subset Construction (Cont.)

Lemma: If $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

Proof: Assume $\mathcal{L}(D) = \mathcal{L}_n$.

Let $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ as in previous lemma.

Then, $y1v \in \mathcal{L}(D)$ but $x0u \notin \mathcal{L}(D)$,

That is, $\hat{\delta}(q_0, y1v) \in F$ but $\hat{\delta}(q_0, x0u) \notin F$.

However, this contradicts the previous lemma that says that $\hat{\delta}(q_0, x_0 u) = \hat{\delta}(q_0, y_1 v)$.

April 18th 2016, Lecture 6

TMV027/DIT321

4/22

Product Construction for NFA

Definition: Given 2 NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ over the same alphabet Σ , we define the product $N_1 \times N_2 = (Q, \Sigma, \delta, q_0, F)$ as follows:

- $Q = Q_1 \times Q_2$;
- $\delta((p_1, p_2), a) = \delta_1(p_1, a) \times \delta_2(p_2, a);$
- $q_0 = (q_1, q_2);$
- $\bullet \ F = F_1 \times F_2.$

Lemma: $(t_1, t_2) \in \hat{\delta}((p_1, p_2), x)$ iff $t_1 \in \hat{\delta}_1(p_1, x)$ and $t_2 \in \hat{\delta}_2(p_2, x)$.

Proof: By induction on x.

Proposition: $\mathcal{L}(N_1 \times N_2) = \mathcal{L}(N_1) \cap \mathcal{L}(N_2)$.

April 18th 2016, Lecture 6 TMV027/DIT321 5/22

Variation of Product Construction for NFA?

Recall: Given 2 DFA D_1 and D_2 , then $\mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2)$.

Given 2 NFA N_1 and N_2 , do we need to define $N_1 \oplus N_2$?

No, union of languages can be modelled by the nondeterminism!

April 18th 2016, Lecture 6

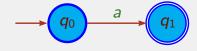
TMV027/DIT321

6/2

Complement of a NFA?

OBS: Given NFA $N = (Q, \Sigma, \delta, q, F)$ and $N' = (Q, \Sigma, \delta, q, Q - F)$ we do **not** have in general that $\mathcal{L}(N') = \Sigma^* - \mathcal{L}(N)$.

Example: Let $\Sigma = \{a\}$ and N and N' as follows:



$$\mathcal{L}(N) = \{a\}$$

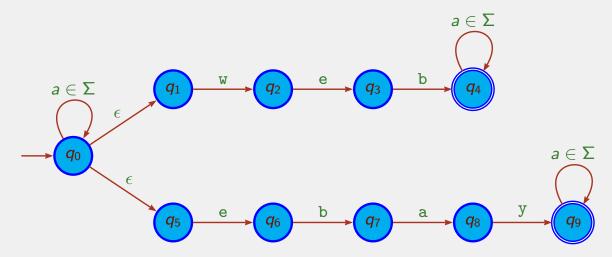
$$\mathcal{L}(N') = \{\epsilon\} \neq \Sigma^* - \{a\}$$

April 18th 2016, Lecture 6 TMV027/DIT321 7/22

NFA with ϵ -Transitions

We could allow ϵ -transitions: transitions from one state to another without reading any input symbol.

Example: The following ϵ -NFA searches for the keyword web and ebay:



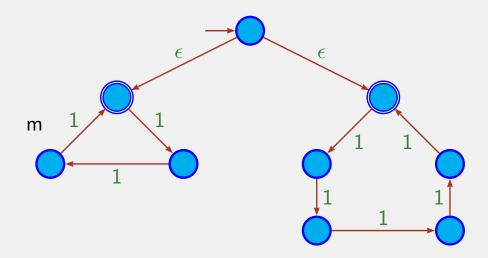
April 18th 2016, Lecture 6

TMV027/DIT32

8/2

$\epsilon\text{-NFA}$ Accepting Words of Length Divisible by 3 or by 5

Example: Let $\Sigma = \{1\}$.



April 18th 2016, Lecture 6 TMV027/DIT321 9/22

NFA with ϵ -Transitions

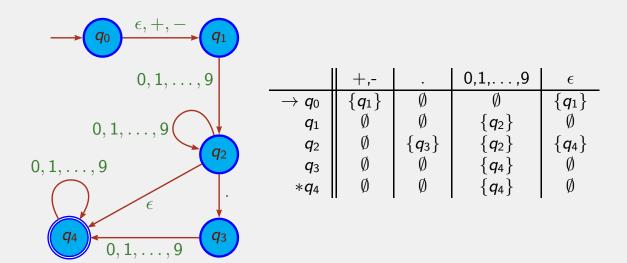
Definition: A *NFA with* ϵ -transitions (ϵ -NFA) is a 5-tuple ($Q, \Sigma, \delta, q_0, F$) consisting of:

- A finite set Q of states;
- \bigcirc A finite set Σ of *symbols* (alphabet);
- **③** A "partial" transition function $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}ow(Q)$;
- \bigcirc A start state $q_0 \in Q$;
- **a** A set $F \subseteq Q$ of *final* or *accepting* states.

April 18th 2016, Lecture 6 TMV027/DIT321 10/2

Exercise: ϵ -NFA Accepting Decimal Numbers

Define a NFA accepting number with an optional \pm - symbol and an optional decimal part.



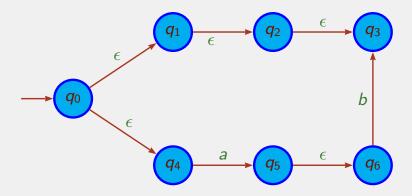
We use the ϵ -transitions to represent the *optional* symbol +/- and the *optional* decimal part.

April 18th 2016, Lecture 6 TMV027/DIT321 11/2

ϵ -Closures

Informally, the ϵ -closure of a state q is the set of states we can reach by doing nothing or by only following paths labelled with ϵ .

Example: For the automaton



the ϵ -closure of q_0 is $\{q_0, q_1, q_2, q_3, q_4\}$.

April 18th 2016, Lecture 6

TMV027/DIT321

12/22

ϵ -Closures

Definition: Formally, we define the ϵ -closure of a set of states as follows:

- If $q \in S$ then $q \in ECLOSE(S)$;
- If $q \in \mathsf{ECLOSE}(S)$ and $p \in \delta(q, \epsilon)$ then $p \in \mathsf{ECLOSE}(S)$.

Note: Alternative formulation

$$\frac{q \in S}{q \in \mathsf{ECLOSE}(S)} \qquad \frac{q \in \mathsf{ECLOSE}(S) \qquad p \in \delta(q, \epsilon)}{p \in \mathsf{ECLOSE}(S)}$$

Definition: We say that S is ϵ -closed iff $S = \mathsf{ECLOSE}(S)$.

April 18th 2016, Lecture 6 TMV027/DIT321 13/22

Remarks: ϵ -Closures

• Intuitively, $p \in \mathsf{ECLOSE}(S)$ iff there exists $q \in S$ and a sequence of ϵ -transitions such that

- The ϵ -closure of a single state q can be computed as ECLOSE($\{q\}$);
- ECLOSE(\emptyset) = \emptyset ;
- S is ϵ -closed iff $q \in S$ and $p \in \delta(q, \epsilon)$ implies $p \in S$.

Exercise: Implement the ϵ -closure!

April 18th 2016, Lecture 6

TMV027/DIT321

14/2

Extending the Transition Function to Strings

Definition: Given an ϵ -NFA $E = (Q, \Sigma, \delta, q_0, F)$ we define

$$egin{aligned} \hat{\delta}: Q imes \Sigma^* &
ightarrow \mathcal{P}ow(Q) \ \hat{\delta}(q,\epsilon) &= \mathsf{ECLOSE}(\{q\}) \ \hat{\delta}(q,ax) &= igcup_{p \in \Delta(\mathsf{ECLOSE}(\{q\}),a)} \hat{\delta}(p,x) \ \end{aligned}$$
 where $\Delta(S,a) = igcup_{p \in S} \delta(p,a)$

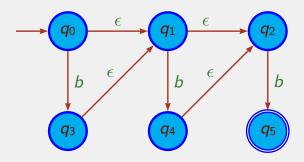
Remark: By definition, $\hat{\delta}(q, a) = \text{ECLOSE}(\Delta(\text{ECLOSE}(\{q\}), a)).$

April 18th 2016, Lecture 6 TMV027/DIT321 15/22

Language Accepted by a ϵ -NFA

Definition: The *language* accepted by the ϵ -NFA $(Q, \Sigma, \delta, q_0, F)$ is the set $\mathcal{L} = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$

Example: Let $\Sigma = \{b\}$.



The automaton accepts the language $\{b, bb, bbb\}$.

Note: Yet again, we could write a program that simulates a ϵ -NFA and let the program tell us whether a certain string is accepted or not.

Exercise: Do it!

April 18th 2016, Lecture 6

TMV027/DIT32

16/22

Eliminating ϵ -Transitions

Definition: Given an ϵ -NFA $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$ we define a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ as follows:

- $Q_D = \{ \mathsf{ECLOSE}(S) \mid S \in \mathcal{P}ow(Q_E) \};$
- $\delta_D(S, a) = \mathsf{ECLOSE}(\Delta(S, a))$ with $\Delta(S, a) = \cup_{p \in S} \delta(p, a)$;
- $q_D = \mathsf{ECLOSE}(\{q_E\});$
- $F_D = \{ S \in Q_D \mid S \cap F_E \neq \emptyset \}.$

Note: This construction is similar to the subset construction but now we need to ϵ -close after each step.

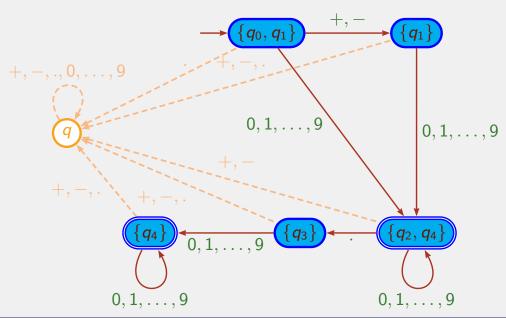
Exercise: Implement this construction!

April 18th 2016, Lecture 6 TMV027/DIT321 17/22

Example: Eliminating ϵ -Transitions

Let us eliminate the ϵ -transitions in ϵ -NFA that recognises numbers in slide 11.

We obtain the following DFA:



April 18th 2016, Lecture 6

TMV027/DIT32

18/22

Eliminating ϵ -Transitions

Let E be an ϵ -NFA and D the corresponding DFA after eliminating ϵ -transitions.

Lemma: $\forall x \in \Sigma^*$. $\hat{\delta}_E(q_E, x) = \hat{\delta}_D(q_D, x)$.

Proof: By induction on x.

Proposition: $\mathcal{L}(E) = \mathcal{L}(D)$.

Proof: $x \in \mathcal{L}(E)$ iff $\hat{\delta}_E(q_E, x) \cap F_E \neq \emptyset$ iff $\hat{\delta}_E(q_E, x) \in F_D$ by definition of F_D iff $\hat{\delta}_D(q_D, x) \in F_D$ by previous lemma iff $x \in \mathcal{L}(D)$.

April 18th 2016, Lecture 6 TMV027/DIT321 19/22

Finite Automata and Regular Languages

We have shown that DFA, NFA and ϵ -NFA are equivalent in the sense that we can transform one to the other.

Hence, a language is *regular* iff there exists a finite automaton (DFA, NFA or ϵ -NFA) that accepts the language.

April 18th 2016, Lecture 6 TMV027/DIT321 20/22

Learning Outcome of the Course (revisited)

After completion of this course, the student should be able to:

- Explain and manipulate the different concepts in automata theory and formal languages;
- Have a clear understanding about the equivalence between (non-)deterministic finite automata and regular expressions;
- Understand the power and the limitations of regular languages and context-free languages;
- Prove properties of languages, grammars and automata with rigorously formal mathematical methods;
- Design automata, regular expressions and context-free grammars accepting or generating a certain language;
- Describe the language accepted by an automata or generated by a regular expression or a context-free grammar;
- Simplify automata and context-free grammars;
- Determine if a certain word belongs to a language;
- Define Turing machines performing simple tasks;
- Differentiate and manipulate formal descriptions of languages, automata and grammars.

April 18th 2016. Lecture 6 TMV027/DIT321 21/2

Overview of Next Lecture

Sections 3.1, 3.4, 3.2.2:

- Regular expressions.
- Algebraic laws for regular expressions;
- Equivalence between FA and RE: from FA to RE.

Note: One of the methods is not in the book!

April 18th 2016, Lecture 6 TMV027/DIT321 22/22