Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2016

Lecture 3 Ana Bove

March 24th 2016

Overview of today's lecture:

- Formal proofs;
- Mathematical/simple and course-of-values/strong induction;
- Inductively defined sets;
- Proofs by structural induction.

Recap: Logic, Sets, Relations, Functions, Alphabets

- Propositions, truth values, connectives, predicates, quantifiers;
- Sets, how to define them, membership, operations on sets, equality, laws;
- Relations, properties (reflexive, symmetric, antisymmetric, transitive, equivalence), partial vs total order, partitions, equivalence class, quotient;
- Functions, domain, codomain, image, partial vs total, injective, surjective, bijective, inverse, composition, restriction;
- Alphabets, words, functions on words (concatenation, length, reverse), prefix vs suffix, power;
- Languages, operation on languages, equality, laws, functions between languages.

March 24th 2016, Lecture 3 TMV027/DIT321 1/24

How Formal Should a Proof Be?

Depends on the purpose but

- Should be convincing;
- Should not leave too much out;
- The validity of each step should be easily understood.

Valid steps are for example:

• Reduction to definition:

"x is divisible by 2" is equivalent to " $\exists k \ge 0.x = 2k$ ";

- Use of hypotheses;
- Combining previous facts in a valid way:

"Given $A \Rightarrow B$ and A we can conclude B by modus ponens".

March 24th 2016, Lecture 3

TMV027/DIT32

2/24

Form of Statements

Statements we want to prove are usually of the form

If
$$H_1$$
 and H_2 ...and H_n then C_1 and ...and C_m

or

$$P_1$$
 and ... and P_k iff Q_1 and ... and Q_m

for $n \ge 0$; $m, k \ge 1$.

Note: Observe that one proves the *conclusion* assuming the validity of the *hypotheses*!

Example: We can easily prove "if 0 = 1 then 4 = 2.000".

March 24th 2016, Lecture 3 TMV027/DIT321 3/24

Different Kinds of Proofs

Proofs by Contradiction

If H then C

is logically equivalent to

H and not C implies "something known to be false".

Example: If $x \neq 0$ then $x^2 \neq 0$ vs. $x \neq 0$ and $x^2 = 0$ is impossible!.

Proofs by Contrapositive

"If H then C" is logically equivalent to "If not C then not H"

Proofs by Counterexample

We find an example that "breaks" what we want to prove.

Example: All Natural numbers are odd.

March 24th 2016, Lecture 3

TMV027/DIT321

4/24

Proving a Property over the Natural Numbers

How to prove an statement over all the Natural numbers?

Example:
$$\forall n \in \mathbb{N}. \ 1 + 2 + 3 + ... + n = \frac{n * (n + 1)}{2}.$$

First we need to look at what the Natural numbers are ...

They are an *inductively defined set* and can be defined by the following *two* rules:

$$\frac{n \in \mathbb{N}}{n+1 \in \mathbb{N}}$$

(More on inductively defined sets on page 16.)

March 24th 2016, Lecture 3 TMV027/DIT321 5/24

Mathematical/Simple Induction

More generally:

$$\frac{P(i), P(i+1), \dots, P(j) \quad \forall i \leqslant n. \ P(n) \Rightarrow P(n+1)}{\forall i \leqslant n. \ P(n)}$$

Hypothesis in read is called inductive hypothesis (IH).

March 24th 2016, Lecture 3

TMV027/DIT32

6/24

Course-of-Values/Strong Induction

Variant of mathematical induction.

Or more generally:

$$\frac{P(i), P(i+1), \dots, P(j)}{\forall i \leqslant n. \ (\forall m. \ i \leqslant m < n \Rightarrow P(m)) \Rightarrow P(n)}{\forall i \leqslant n. \ P(n)}$$

Here we might have several inductive hypotheses P(m)!

March 24th 2016, Lecture 3 TMV027/DIT321 7/24

Example: Proof by Induction

Proposition: Let
$$f(0) = 0$$
 and $f(n + 1) = f(n) + n + 1$.
 Then, $\forall n \in \mathbb{N}$. $f(n) = \frac{n * (n + 1)}{2}$.

Proof: By mathematical induction on n.

Let
$$P(n)$$
 be $f(n) = \frac{n * (n+1)}{2}$.

Base case: We prove that P(0) holds.

Inductive step: We prove that if for a given $n \ge 0$ P(n) holds (our IH), then P(n+1) also holds.

Closure: Now we have established that for all n, P(n) is true! In particular, $P(0), P(1), P(2), \ldots, P(15), \ldots$ hold.

March 24th 2016, Lecture 3 TMV027/DIT321 8,

Example: Proof by Induction

Proposition: If $n \ge 8$ then n can be written as a sum of 3's and 5's.

Proof: By course-of-values induction on n.

Let P(n) be "n can be written as a sum of 3's and 5's".

Base cases: P(8), P(9) and P(10) hold.

Inductive step: We shall prove that if $P(8), P(9), P(10), \ldots, P(n)$ hold for $n \ge 10$ (our IH) then P(n+1) holds.

Observe that if $n \ge 10$ then $n \ge n+1-3 \ge 8$. Hence by inductive hypothesis P(n+1-3) holds. By adding an extra 3 then P(n+1) holds as well.

Closure: $\forall n \ge 8$. *n* can be written as a sum of 3's and 5's.

March 24th 2016, Lecture 3 TMV027/DIT321 9/24

Example: All Horses have the Same Colour

Example: Proof by Induction

Proposition: All horses have the same colour.

Proof: By mathematical induction on n.

Let P(n) be "in any set of n horses they all have the same colour".

Base cases: P(0) is not interesting in this example.

P(1) is clearly true.

Inductive step: Let us show that P(n) (our IH) implies P(n+1).

Let $h_1, h_2, \ldots, h_n, h_{n+1}$ be a set of n+1 horses.

Take h_1, h_2, \ldots, h_n . By IH they all have the same colour.

Take now $h_2, h_3, \ldots, h_n, h_{n+1}$. Again, by IH they all have the same

colour.

Hence, by transitivity, all horses $h_1, h_2, \ldots, h_n, h_{n+1}$ must have the same

colour.

Closure: $\forall n$. all n horses in the set have the same colour.

March 24th 2016, Lecture 3 TMV027/DIT321 11/24

Example: What Went Wrong???

Mutual Induction

Sometimes we cannot prove a single statement P(n) but rather a group of statements $P_1(n), P_2(n), \ldots, P_k(n)$ simultaneously by induction on n.

This is very common in automata theory where we need an statement for each of the states of the automata.

March 24th 2016. Lecture 3 TMV027/DIT321 13/24

Example: Proof by Mutual Induction

Let $f, g, h : \mathbb{N} \to \{0, 1\}$ be as follows:

$$f(0) = 0$$
 $g(0) = 1$ $h(0) = 0$
 $f(n+1) = g(n)$ $g(n+1) = f(n)$ $h(n+1) = 1 - h(n)$

Proposition: $\forall n. \ h(n) = f(n).$

Proof: If P(n) is "h(n) = f(n)" it does not seem possible to prove $P(n) \Rightarrow P(n+1)$ directly.

We strengthen P(n) to P'(n): Let P'(n) be " $h(n) = f(n) \land h(n) = 1 - g(n)$ ".

By mathematical induction.

We prove $P'(0): h(0) = f(0) \wedge h(0) = 1 - g(0)$.

Then we prove that $P'(n) \Rightarrow P'(n+1)$.

Since $\forall n. P'(n)$ is true then $\forall n. P(n)$ is true.

March 24th 2016, Lecture 3

TMV027/DIT321

14/24

Recursive Data Types

What are (the data types of) Natural numbers, lists, trees, ... ?

This is how you would defined them in Haskell:

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

data BTree a = Leaf a | Node a (BTree a) (BTree a)

Observe the similarity between the definition of Nat above and the rules in slide 5...

March 24th 2016, Lecture 3 TMV027/DIT321 15/24

Inductively Defined Sets

Natural Numbers:

Base case: 0 is a Natural number;

Inductive step: If n is a Natural number then n+1 is a Natural number;

Closure: There is no other way to construct Natural numbers.

Finite Lists:

Base case: [] is the empty list over any set A;

Inductive step: If $a \in A$ and xs is a list over A then a : xs is a list over A;

Closure: There is no other way to construct lists.

Finitely Branching Trees:

Base case: If $a \in A$ then (a) is a tree over any set A;

Inductive step: If t_1, \ldots, t_k are tree over the set A and $a \in A$,

then (a, t_1, \ldots, t_k) is a tree over A;

Closure: There is no other way to construct trees.

į

March 24th 2016. Lecture 3

TMV027/DIT32:

16/24

Inductively Defined Sets (Cont.)

To define a set S by induction we need to specify:

Base cases: $e_1, \ldots, e_m \in S$;

Inductive steps: Given $s_1, \ldots, s_{n_i} \in S$, then $c_1[s_1, \ldots, s_{n_1}], \ldots, c_k[s_1, \ldots, s_{n_k}] \in S$;

Closure: There is no other way to construct elements in S. (We will usually omit this part.)

Example: The set of simple Boolean expressions is defined as:

Base cases: true and false are Boolean expressions;

Inductive steps: if a and b are Boolean expressions then

(a) not a a and b a or b

are also Boolean expressions.

March 24th 2016, Lecture 3 TMV027/DIT321 17/24

Proofs by Structural Induction

Generalisation of mathematical induction to other inductively defined sets such as lists, trees, . . .

VERY useful in computer science: it allows to prove properties over the (finite) elements in a data type!

Given an inductively defined set S, to prove $\forall s \in S$. P(s) then:

Base cases: We prove that $P(e_1), \ldots, P(e_m)$;

Inductive steps: Assuming $P(s_1), \ldots, P(s_{n_i})$ (our inductive hypotheses IH), we prove $P(c_1[s_1,...,s_{n_1}]),...,P(c_k[s_1,...,s_{n_k}]);$

Closure: $\forall s \in S$. P(s). (We will usually omit this part.)

Inductive Sets and Structural Induction

Inductive definition of *S*:

nductive definition of
$$S$$
:
$$\frac{s_1,\ldots,s_{n_1}\in S}{e_1\in S} \cdots \frac{s_1,\ldots,s_{n_1}\in S}{c_1[s_1,\ldots,s_{n_1}]\in S} \cdots \frac{s_1,\ldots,s_{n_k}\in S}{c_k[s_1,\ldots,s_{n_k}]\in S}$$

Inductive principle associated to *S*:

base cases
$$\begin{cases} P(e_1) \\ \vdots \\ P(e_m) \end{cases}$$

$$\begin{cases} \forall s_1, \dots, s_{n_1} \in S. \ \textit{P}(s_1), \cdots, \textit{P}(s_{n_1}) \Rightarrow \textit{P}(c_1[s_1, \dots, s_{n_1}]) \\ & \vdots \\ \forall s_1, \dots, s_{n_k} \in S. \ \textit{P}(s_1), \cdots, \textit{P}(s_{n_k}) \Rightarrow \textit{P}(c_k[s_{k_1}, \dots, s_{n_k}]) \end{cases}$$

Example: Structural Induction over Lists

We can now use recursion to define functions over an inductively defined set and then prove properties of these functions by structural induction.

Let us (recursively) define the append and length functions over lists:

$$[]++ys=ys$$
 $len []=0$ $(a:xs)++ys=a:(xs++ys)$ $len (a:xs)=1+len xs$

Proposition: $\forall xs, ys \in \text{List } A. \text{ len } (xs ++ ys) = \text{len } xs + \text{len } ys.$

Proof: By structural induction on $xs \in List A$.

P(xs) is $\forall ys \in \text{List } A$. len (xs ++ ys) = len xs + len ys.

Base case: We prove P[].

Inductive step: We show $\forall xs \in \text{List } A, a \in A.P(xs) \Rightarrow P(a : xs)$.

Closure: $\forall xs \in \text{List } A. \ P(xs)$.

March 24th 2016, Lecture 3

TMV027/DIT32

20/24

Example: Structural Induction over Lists

Let us (recursively) define the append and reverse functions over lists:

[] ++
$$ys = ys$$
 rev [] = []
($a: xs$) ++ $ys = a: (xs ++ ys)$ rev ($a: xs$) = rev $xs ++ [a]$

Assume append is associative and that ys ++ [] = ys.

Proposition: $\forall xs, ys \in \text{List } A. \text{ rev } (xs ++ ys) = \text{rev } ys ++ \text{rev } xs.$

Proof: By structural induction on $xs \in List A$.

P(xs) is $\forall ys \in \text{List } A$. rev (xs ++ ys) = rev ys ++ rev xs.

Base case: We prove P[].

Inductive step: We show $\forall xs \in \text{List } A, a \in A.P(xs) \Rightarrow P(a:xs)$.

Closure: $\forall xs \in \text{List } A. P(xs)$.

March 24th 2016, Lecture 3 TMV027/DIT321 21/24

Example: Structural Induction over Trees

Let us (recursively) define functions counting the number of edges and of nodes of a tree:

$$egin{aligned} \mathsf{ne}(a) &= 0 & \mathsf{nn}(a) &= 1 \ \mathsf{ne}(a,t_1,\ldots,t_k) &= k+ & \mathsf{nn}(a,t_1,\ldots,t_k) &= 1+ \ & \mathsf{ne}(t_1)+\ldots+\mathsf{ne}(t_k) & & \mathsf{nn}(t_1)+\ldots+\mathsf{nn}(t_k) \end{aligned}$$

Proposition: $\forall t \in \text{Tree } A. \ \mathsf{nn}(t) = 1 + \mathsf{ne}(t).$

Proof: By structural induction on $t \in \text{Tree } A$. P(t) is nn(t) = 1 + ne(t).

Base case: We prove P(a).

Inductive step: We show $\forall t_1, \ldots, t_k \in \text{Tree } A, a \in A.P(t_1), \ldots, P(t_k) \Rightarrow P(a, t_1, \ldots, t_k)$.

Closure: $\forall t \in \text{Tree } A. P(t)$.

March 24th 2016, Lecture 3 TMV027/DIT321 22/24

Proofs by Induction: Overview of the Steps to Follow

- State property P to prove by induction.Might be more general than the actual statement we need to prove!
- Determine and state the method to use in the proof!!!! Example: Mathematical induction on the length of the list, course-of-values induction on the height of a tree, structural induction on a certain data type, ...
- Identify and state base case(s).Could be more than one! Not always trivial to determine.
- Prove base case(s).
- Identify and state IH!Will depend on the method to be used (see point 2).
- Prove inductive step(s).
- (State closure.)
- \odot Deduce your statement from P (if not the same).

March 24th 2016. Lecture 3 TMV027/DIT321 23/24

Overview of Next Lecture (HB3)

Sections 2–2.2:

• DFA: deterministic finite automata.

Have a nice Easter Break!

March 24th 2016, Lecture 3 TMV027/DIT321 24/24