
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2016

Lecture 14
Ana Bove

May 19th 2016

Overview of today’s lecture:

Push-down automata;

Turing machines.

Recap: Context-free Languages

Closure properties for CFL:

Union, concatenation, closure, reversal and prefix;
Intersection and difference with a RL;
No closure under complement;

Decision properties for CFL:

Is the language empty?
Does a word belong to the language of a certain grammar?

The following problems are undecidable:

Is the CFG G ambiguous?
Is the CFL L inherently ambiguous?
If L1 and L2 are CFL, is L1 ∩ L2 = ∅?
If L1 and L2 are CFL, is L1 = L2? is L1 ⊆ L2?
If L is a CFL and P a RL, is P = L? is P ⊆ L?
If L is a CFL over Σ, is L = Σ∗?

May 19th 2016, Lecture 14 TMV027/DIT321 1/26

Push-down Automata

Push-down automata (PDA) are essentially ε-NFA with a stack to store
information.

The stack is needed to give the automata extra “memory”.

Observe we can only access the last element that was added to the stack!

Example: To recognise the language 0n1n we proceed as follows:

When reading the 0’s, we push a symbol into the stack;

When reading the 1’s, we pop the symbol on top of the stack;

We accept the word if when we finish reading the input then the stack is empty.

The languages accepted by the PDA are exactly the CFL.
See the book, sections 6.1–6.3.

May 19th 2016, Lecture 14 TMV027/DIT321 2/26

Variation of Push-down Automata

DPDA = DFA + stack: Accepts a language that is between RL and CFL.
The lang. accepted by DPDA have unambiguous grammars.
However, not all languages that have unambiguous
grammars can be accepted by these DPDA.

Example: The language generated by the unambiguous grammar

S → 0S0 | 1S1 | ε

cannot be recognised by a DPDA.

See section 6.4 in the book.

2 or more stacks: A PDA with at least 2 stacks is as powerful as a TM.
Hence these PDA can recognise the recursively enumerable
languages (more on this later).
See section 8.5.2.

May 19th 2016, Lecture 14 TMV027/DIT321 3/26

Undecidable Problems

Recall: An undecidable problem is a decision problem for which it is impossible to
construct a single algorithm that always leads to a yes-or-no answer.

To prove that a certain problem P is undecidable one usually reduces an
already known undecidable problem U to the problem P: instances of U
become instances of P.

(Can be seen like one “transforms” U so it “becomes” P).

That is, w ∈ U iff w ′ ∈ P for certain w and w ′.
Then, a solution to P would serve as a solution to U.

However, we know there are no solutions to U since U is known to be
undecidable.
Then we have a contradiction.

May 19th 2016, Lecture 14 TMV027/DIT321 4/26

Example of Undecidable Problem: Post’s Correspondence

It is an undecidable decision problem introduced by Emil Post in 1946.

Given words u1, . . . , un and v1, . . . , vn in {0, 1}∗, is it possible to
find i1, . . . , ik such that ui1 . . . uik = vi1 . . . vik ?

Example: Given u1 = 1, u2 = 10, u3 = 001, v1 = 011, v2 = 11, v3 = 00 we have that

u3u2u3u1 = v3v2v3v1 = 001100011.

We can use grammars to show that the Post’s correspondence problem is
undecidable by showing that a grammar is ambiguous iff the PCP has a
solution.

(See Section 9.4 in the book.)

May 19th 2016, Lecture 14 TMV027/DIT321 5/26

Undecidable and Intractable Problems

The theory of undecidable problems provides a guidance about what we
may or may not be able to perform with a computer.

One should though distinguish between undecidable problems and
intractable problems, that is, problems that are decidable but require a
large amount of time to solve them.

(In daily life, intractable problems are more common than undecidable ones.)

To reason about both kind of problems we need to have a basic notion of
computation.

May 19th 2016, Lecture 14 TMV027/DIT321 6/26

Once Upon a Time ...

In early 1900’s, Bertrand Russell showed that for-
mal logic can express large parts of mathematics.

In 1928, David Hilbert posed a challenge known as
the Entscheidungsproblem (decision problem).
This problem asked for an effectively calculable
procedure to determine whether a given statement
is provable from the axioms using the rules of logic.

May 19th 2016, Lecture 14 TMV027/DIT321 7/26

To Prove or Not To Prove: That Is the Question!

The decision problem presupposed completness:
any statement or its negation can be proved.

“Wir müssen wissen, wir werden wissen”
(“We must know, we will know”)

In 1931, Kurt Gödel published the incompleteness
theorems.

The first theorem shows that any consistent system capa-
ble of expressing arithmetic cannot be complete: there is a
true statement that cannot be proved with the rules of the
system.

The second theorem shows that such a system could not

prove its own consistency.
May 19th 2016, Lecture 14 TMV027/DIT321 8/26

λ-Calculus as a Language for Logic

In the ’30s, Alonzo Church (and his students
Stephen Kleene and John Barkley Rosser) intro-
duced the λ-calculus as a way to define notations
for logical formulas:

x | λx .M | M N

In 1935, Kleene and
Rosser proved the system
inconsistent (due to self ap-

plication).

May 19th 2016, Lecture 14 TMV027/DIT321 9/26

λ-Calculus as a Language for Computations

Church discovered how to encode numbers in the λ-calculus.

For example, 3 is encoded as λf .λx .f (f (f (x))).

Encoding for addition, multiplication and (later) predecesor were defined.

Thereafter Church and his students became convinced any effectively
calculable function of numbers could be represented by a term in the
λ-calculus.

May 19th 2016, Lecture 14 TMV027/DIT321 10/26

Church’s Thesis

Church proposed λ-definability as the definition of effectively calculable
(known today as Church’s Thesis).

He also demonstrated that the problem of whether a given λ-term has a
normal form was not λ-definable (equivalent to the Halting problem).

A year later, he demonstrated there was no λ-definable solution to the
Entscheidungsproblem.

May 19th 2016, Lecture 14 TMV027/DIT321 11/26

General Recursive Functions

1933: Gödel was not convinced by Church’s assertion that every effectively
calculable function was λ-definable.

Church offered that Gödel would propose a different definition which he
then would prove it was included in λ-definability.

1934: Gödel proposed the general recursive functions as his candidate for
effective calculability (system which Kleene after developed and published).

Church and his students then proved that the two definitions were
equivalent.

Now Gödel doubt his own definition was correct!

May 19th 2016, Lecture 14 TMV027/DIT321 12/26

Turing Machines

Simultaneously, Alan Mathison
Turing formulated his notion of
effectively calculable in terms
of a Turing machine.

He used the Turing machines to
show the Entscheidungsprob-
lem undecidable by first show-
ing that the halting problem
was undecidable.

Turing also proved the equivalence of the λ-calculus and his machines.
(Church-Turing Thesis)

Gödel is now finally convinced! :-)

May 19th 2016, Lecture 14 TMV027/DIT321 13/26

Computer Science Was Born!

Turing’s approach
took into account
the capabilities of a
(human) computer: a
human performing a
computation assisted
by paper and pencil.

May 19th 2016, Lecture 14 TMV027/DIT321 14/26

Alan Mathison Turing (23 June 1912 – 7 June 1954)

British computer scientist,
mathematician, logician and
cryptanalyst;

Considered the father of
theoretical computer science and
artificial intelligence;

Philosopher, theoretical biologist;

Marathon and ultra distance
runner;

In the 50’ he also became
interested in chemistry.

May 19th 2016, Lecture 14 TMV027/DIT321 15/26

Alan Mathison Turing

He started studying at Cambridge and then moved to Princeton
where he took his Ph.D. in 1938 with Alonzo Church;

He invented the concept of a computer, called Turing Machine (TM);

Turing showed that TM could perform any kind of computation;

He also showed that his notion of computable was equivalent to
Church’s notion of effective calculable;

During the WWII he helped Britain to break the German Enigma
machines which shortened the war by 2-4 years and saved many lives!

Since 1966, ACM annually gives the Turing Award for contributions
to the computing community.

May 19th 2016, Lecture 14 TMV027/DIT321 16/26

Turing Machines (1936)

Theoretically, a TM is just as powerful as any other computer!
Powerful here refers only to which computations a TM is capable of doing, not to

how fast or efficiently it does its job.

Conceptually, a TM has a finite set of states, a finite alphabet
(containing a blank symbol), and a finite set of instructions;

Physically, it has a head that can read, write, and move along an
infinitely long tape (on both sides) that is divided into cells.

Each cell contains a symbol of the alphabet (possibly the blank
symbol):

· · · a1 a2 a3 a4 a5 · · ·
↑

May 19th 2016, Lecture 14 TMV027/DIT321 17/26

Turing Machines: More Concretely

Let � represents the blank symbol and let Σ be a non-empty
alphabet of symbols such that {�, L,R} ∩ Σ = ∅.
Now, we define Σ′ = Σ ∪ {�};

The read/write head of the TM is always placed over one of the cells.
We said that that particular cell is being read, examined or scanned;

At every moment, the TM is in a certain state q ∈ Q, where Q is a
non-empty and finite set of states;

In some cases, we consider a set F of final states.

May 19th 2016, Lecture 14 TMV027/DIT321 18/26

Turing Machines: Transition Functions

In one move, the TM will:

1 Change to a (possibly) new state;

2 Replace the symbol below the head by a (possibly) new symbol;

3 Move the head to the left (denoted L) or to the right (denoted R).

The behaviour of a TM is given by a possibly partial transition function

δ ∈ Q × Σ′ → Q × Σ′ × {L,R}

δ is such that for every q ∈ Q, a ∈ Σ′ there is at most one instruction.

Note: We have a deterministic TM.

May 19th 2016, Lecture 14 TMV027/DIT321 19/26

How to Compute with a TM?

Before the execution starts, the tape of a TM looks as follows:

· · · a1 a2 · · · an−1 an b1 · · · bm · · ·

↑

The input data is placed on the tape, if necessary separated with
blanks;

There are infinitely many blank to the left and to the right of the
input;

The head is placed on the first symbol of the input;

The TM is in a special initial state q0 ∈ Q;

The machine then proceeds according to the transition function δ.

May 19th 2016, Lecture 14 TMV027/DIT321 20/26

Turing Machine: Formal Definition

Definition: A TM is a 6-tuple (Q,Σ, δ, q0,�,F) where:

Q is a non-empty, finite set of states;

Σ is a non-empty alphabet such that {�, L,R} ∩ Σ = ∅;
δ ∈ Q × Σ′ → Q × Σ′ × {L,R} is a transition function, where
Σ′ = Σ ∪ {�};
q0 ∈ Q is the initial state;

� is the blank symbol, � /∈ Σ;

F is a non-empty, finite set of final or accepting states, F ⊆ Q.

Note: In some cases, the set F is not relevant (compare with FA).

May 19th 2016, Lecture 14 TMV027/DIT321 21/26

Result of a Turing Machine

Definition: Let M = (Q,Σ, δ, q0,�,F) be a TM.
We say that M halts if for certain q ∈ Q and a ∈ Σ, δ(q, a) is undefined.

Whatever is written in the tape when the TM halts can be considered as
the result of the computation performed by the TM.

If we are only interested in the result of a computation, we can omit F
from the formal definition of the TM.

May 19th 2016, Lecture 14 TMV027/DIT321 22/26

Examples

Example: Let Σ = {0, 1}, Q = {q0} and let δ be as follows:

δ(q0, 0) = (q0, 1,R)
δ(q0, 1) = (q0, 0,R)

What does this TM do?

Example: The execution of a TM might loop.

Consider the following set of instructions for Σ and Q as above.

δ(q0, a) = (q0, a,R) with a ∈ Σ ∪ {�}

May 19th 2016, Lecture 14 TMV027/DIT321 23/26

Recursive and Recursively Enumerable Languages

Let M = (Q,Σ, δ, q0,�,F) be a TM.

Definition: The TM M accepts a word w ∈ Σ∗ if when we run M with w
as input, the TM is in a final state when it halts.

Definition: The language accepted by a TM is the set of words that are
accepted by the TM.

Definition: A language is called recursively enumerable if there is a TM
accepting the words in that language.

Definition: A Turing decider is a TM that never loops, i.e. the TM halts.

Definition: A language is called recursive or decidable if there is a Turing
decider accepting the words in the language.
May 19th 2016, Lecture 14 TMV027/DIT321 24/26

Example of a Turing Decider

How to define a TM that accepts the language L = {ww r | w ∈ {0, 1}∗}?

Let Σ = {0, 1,X ,Y }, Q = {q0, . . . , q7} and F = {q7},

Let a ∈ {0, 1}, b ∈ {X ,Y ,�}, and c ∈ {X ,Y }.

δ(q0, 0) = (q1,X ,R) δ(q0, 1) = (q3,Y ,R) δ(q0,�) = (q7,�,R)
δ(q1, a) = (q1, a,R) δ(q3, a) = (q3, a,R)
δ(q1, b) = (q2, b, L) δ(q3, b) = (q4, b, L)
δ(q2, 0) = (q5,X , L) δ(q4, 1) = (q5,Y , L)
δ(q5, a) = (q6, a, L) δ(q5, c) = (q7, c,R)
δ(q6, a) = (q6, a, L) δ(q6, c) = (q0, c,R)

What happens with the input 0110?

And with the input 010?

May 19th 2016, Lecture 14 TMV027/DIT321 25/26

Overview of Next Lecture

More on Turing machines;

Summary of the course.

May 19th 2016, Lecture 14 TMV027/DIT321 26/26

