Finite Automata Theory and Formal Languages

TMV027/DIT321- LP4 2016

Lecture 13

Ana Bove

May 16th 2016

Overview of today's lecture:

- Closure properties of CFL;
- Decision properties of CFL;
- Guest lecture by Andreas Abel on Putting Formal Languages to Work

Recap: Context-free Grammars

- Regular languages are also context-free;
- Chomsky hierarchy;
- Simplification of grammars:
- Elimination of ϵ-productions;
- Elimination of unit productions;
- Elimination of useless symbols:
- Elimination of non-generating symbols;
- Elimination of non-reachable symbols;
- Chomsky normal forms;
- Pumping lemma for context-free languages.

Closure under Union

Theorem: Let $G_{1}=\left(V_{1}, T, \mathcal{R}_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, \mathcal{R}_{2}, S_{2}\right)$ be CFG. Then $\mathcal{L}\left(G_{1}\right) \cup \mathcal{L}\left(G_{2}\right)$ is a context-free language.

Proof: Let us assume $V_{1} \cap V_{2}=\emptyset$ (easy to get via renaming).
Let S be a fresh variable.
We construct $G=\left(V_{1} \cup V_{2} \cup\{S\}, T, \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}, S\right)$.

It is now easy to see that $\mathcal{L}(G)=\mathcal{L}\left(G_{1}\right) \cup \mathcal{L}\left(G_{2}\right)$ since a derivation will have the form

$$
S \Rightarrow S_{1} \Rightarrow^{*} w \text { if } w \in \mathcal{L}\left(G_{1}\right)
$$

or

$$
S \Rightarrow S_{2} \Rightarrow^{*} w \text { if } w \in \mathcal{L}\left(G_{2}\right)
$$

Closure under Concatenation

Theorem: Let $G_{1}=\left(V_{1}, T, \mathcal{R}_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, \mathcal{R}_{2}, S_{2}\right)$ be CFG. Then $\mathcal{L}\left(G_{1}\right) \mathcal{L}\left(G_{2}\right)$ is a context-free language.

Proof: Again, let us assume $V_{1} \cap V_{2}=\emptyset$.
Let S be a fresh variable.
We construct $G=\left(V_{1} \cup V_{2} \cup\{S\}, T, \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}, S\right)$.

It is now easy to see that $\mathcal{L}(G)=\mathcal{L}\left(G_{1}\right) \mathcal{L}\left(G_{2}\right)$ since a derivation will have the form

$$
S \Rightarrow S_{1} S_{2} \Rightarrow^{*} u v
$$

with

$$
S_{1} \Rightarrow^{*} u \text { and } S_{2} \Rightarrow^{*} v
$$

for $u \in \mathcal{L}\left(G_{1}\right)$ and $v \in \mathcal{L}\left(G_{2}\right)$.

Closure under Closure

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
Then $\mathcal{L}(G)^{+}$and $\mathcal{L}(G)^{*}$ are context-free languages.

Proof: Let S^{\prime} be a fresh variable.
We construct $G+=\left(V \cup\left\{S^{\prime}\right\}, T, \mathcal{R} \cup\left\{S^{\prime} \rightarrow S \mid S S^{\prime}\right\}, S^{\prime}\right)$ and
$G_{*}=\left(V \cup\left\{S^{\prime}\right\}, T, \mathcal{R} \cup\left\{S^{\prime} \rightarrow \epsilon \mid S S^{\prime}\right\}, S^{\prime}\right)$.

It is easy to see that $S^{\prime} \Rightarrow \epsilon$ in $G *$.
Also that $S^{\prime} \Rightarrow^{*} S \Rightarrow^{*} w$ if $w \in \mathcal{L}(G)$ is a valid derivation both in $G+$ and in $G *$. In addition, if $w_{1}, \ldots, w_{k} \in \mathcal{L}(G)$, it is easy to see that the derivation

$$
\begin{aligned}
S^{\prime} & \Rightarrow S S^{\prime} \Rightarrow^{*} w_{1} S^{\prime} \Rightarrow w_{1} S S^{\prime} \Rightarrow^{*} w_{1} w_{2} S^{\prime} \Rightarrow^{*} \ldots \\
& \Rightarrow w_{1} w_{2} \ldots w_{k-1} S^{\prime} \Rightarrow^{*} w_{1} w_{2} \ldots w_{k-1} S \Rightarrow^{*} w_{1} w_{2} \ldots w_{k-1} w_{k}
\end{aligned}
$$

is a valid derivation both in $G+$ and in $G *$.

Non Closure under Intersection

Example: Consider the following languages over $\{a, b, c\}$:

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{a^{k} b^{k} c^{m} \mid k, m>0\right\} \\
& \mathcal{L}_{2}=\left\{a^{m} b^{k} c^{k} \mid k, m>0\right\}
\end{aligned}
$$

It is easy to give CFG generating both \mathcal{L}_{1} and \mathcal{L}_{2}, hence \mathcal{L}_{1} and \mathcal{L}_{2} are CFL.

However $\mathcal{L}_{1} \cap \mathcal{L}_{2}=\left\{a^{k} b^{k} c^{k} \mid k>0\right\}$ is not a CFL (see slide 26 lecture 12).

Closure under Intersection with Regular Language

Theorem: If \mathcal{L} is a $C F L$ and \mathcal{P} is a $R L$ then $\mathcal{L} \cap \mathcal{P}$ is a $C F L$.

Proof: See Theorem 7.27 in the book.
(It uses push-down automata which we have not seen.)

Example: Consider the following language over $\Sigma=\{0,1\}$:

$$
\mathcal{L}=\left\{w w \mid w \in \Sigma^{*}\right\}
$$

Consider now $\mathcal{L}^{\prime}=\mathcal{L} \cap \mathcal{L}\left(0^{*} 1^{*} 0^{*} 1^{*}\right)=\left\{0^{n} 1^{m} 0^{n} 1^{m} \mid n, m \geqslant 0\right\}$.
\mathcal{L}^{\prime} is not a CFL (see additional exercise 4 for week 7).
Hence \mathcal{L} cannot be a CFL since $\mathcal{L}\left(0^{*} 1^{*} 0^{*} 1^{*}\right)$ is a RL .

Non Closure under Complement

Theorem: CFL are not closed under complement.

Proof: Notice that

$$
\mathcal{L}_{1} \cap \mathcal{L}_{2}=\overline{\overline{\mathcal{L}_{1}} \cup \overline{\mathcal{L}_{2}}}
$$

If CFL are closed under complement then they should be closed under intersection (since they are closed under union).

Then CFL are in general not closed under complement.

Closure under Difference?

Theorem: CFL are not closed under difference.

Proof: Let \mathcal{L} be a CFL over Σ.
It is easy to give a CFG that generates Σ^{*}.
Observe that $\overline{\mathcal{L}}=\Sigma^{*}-\mathcal{L}$.
Then if CFL are closed under difference they would also be closed under complement.

Theorem: If \mathcal{L} is a $C F L$ and \mathcal{P} is a $R L$ then $\mathcal{L}-\mathcal{P}$ is a $C F L$.

Proof: Observe that $\overline{\mathcal{P}}$ is a RL and $\mathcal{L}-\mathcal{P}=\mathcal{L} \cap \overline{\mathcal{P}}$.

Closure under Reversal and Prefix

Theorem: If \mathcal{L} is a $C F L$ then so is $\mathcal{L}^{r}=\{\operatorname{rev}(w) \mid w \in \mathcal{L}\}$.

Proof: Given a CFG $G=(V, T, \mathcal{R}, S)$ for \mathcal{L} we construct the grammar $G^{r}=\left(V, T, \mathcal{R}^{r}, S\right)$ where \mathcal{R}^{r} is such that, for each rule $A \rightarrow \alpha$ in \mathcal{R}, then $A \rightarrow \operatorname{rev}(\alpha)$ is in \mathcal{R}^{r}.

One should show by induction on the length of the derivations in G and G^{r} that $\mathcal{L}\left(G^{r}\right)=\mathcal{L}^{r}$.

Theorem: If \mathcal{L} is a $C F L$ then so is $\operatorname{Prefix}(\mathcal{L})$.

Proof: For closure under prefix see exercise 7.3 .1 part a) in the book.

Decision Properties of Context-Free Languages

Very little can be answered when it comes to CFL.

The major tests we can answer are whether:

- The language is empty;
(See the algorithm that tests for generating symbols in slide 6 lecture 12:
if \mathcal{L} is a CFL given by a grammar with start variable S, then \mathcal{L} is empty if S is not generating.)
- A certain string belongs to the language.

Testing Membership in a Context-Free Language

Checking if $w \in \mathcal{L}(G)$, where $|w|=n$, by trying all productions may be exponential on n.

An efficient way to check for membership in a CFL is based on the idea of dynamic programming.
(Method for solving complex problems by breaking them down into simpler problems, applicable mainly to problems where many of their subproblems are really the same; not to be confused with the divide and conquer strategy.)

The algorithm is called the CYK algorithm after the 3 people who independently discovered the idea: Cock, Younger and Kasami.

It is a $O\left(n^{3}\right)$ algorithm.

Example: CYK Algorithm

Consider the grammar given by the rules

$$
S \rightarrow A B|B A \quad A \rightarrow A S| a \quad B \rightarrow B S \mid b
$$

and starting symbol S.
Does abba belong to the language generated by the grammar?

We fill the corresponding table:

Then $S \Rightarrow^{*}$ abba.

The CYK Algorithm

Let $G=(V, T, \mathcal{R}, S)$ be a CFG in CNF and $w=a_{1} a_{2} \ldots a_{n} \in T^{*}$.
Does $w \in \mathcal{L}(G)$?

In the CYK algorithm we fill a table

$$
\begin{array}{|cccccc}
V_{1 n} & & & & & \\
V_{1(n-1)} & V_{2 n} & & & & \\
\vdots & \vdots & & & & \\
V_{12} & V_{23} & V_{34} & \ldots & V_{(n-1) n} & \\
V_{11} & V_{22} & V_{33} & \ldots & V_{(n-1)(n-1)} & V_{n n} \\
\hline a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & a_{n}
\end{array}
$$

where $V_{i j} \subseteq V$ is the set of A 's such that $A \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{j}$.

We want to know if $S \in V_{1 n}$, hence $S \Rightarrow^{*} a_{1} a_{2} \ldots a_{n}$.

CYK Algorithm: Observations

- Each row corresponds to the substrings of a certain length:
- bottom row is length 1 ,
- second from bottom is length 2 ,
- ...
- top row is length n;
- We work row by row upwards and compute the $V_{i j}$'s;
- In the bottom row we have $i=j$, that is, ways of generating a_{i};
- $V_{i j}$ is the set of variables generating $a_{i} a_{i+1} \ldots a_{j}$ of length $j-i+1$ (hence, $V_{i j}$ is in row $j-i+1$);
- In the rows below that of $V_{i j}$ we have all ways to generate shorter strings, including all prefixes and suffixes of $a_{i} a_{i+1} \ldots a_{j}$.

CYK Algorithm: Table Filling

We compute $V_{i j}$ as follows (remember we work with a CFG in CNF):
Base case: First row in the table. Here $i=j$.
Then $V_{i i}=\left\{A \mid A \rightarrow a_{i} \in \mathcal{R}\right\}$.
Induction step: To compute $V_{i j}$ for $i<j$ we have all $V_{p q}$'s in rows below.
The length of the string is at least 2 , so $A \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{j}$ starts with $A \Rightarrow B C$ such that $B \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{k}$ and $C \Rightarrow^{*} a_{k+1} \ldots a_{j}$ for some k.

So $A \in V_{i j}$ if $\exists k, i \leqslant k<j$ such that

- $B \in V_{i k}$ and $C \in V_{(k+1) j}$;
- $A \rightarrow B C \in \mathcal{R}$.

We need to look at
$\left(V_{i i}, V_{(i+1) j}\right),\left(V_{i(i+1)}, V_{(i+2) j}\right), \ldots,\left(V_{i(j-1)}, V_{j j}\right)$.

Example: CYK Algorithm

Consider the grammar given by the rules

$$
\begin{array}{ll}
S \rightarrow X Y & X \rightarrow X A|a| b \\
Y \rightarrow A Y \mid a & A \rightarrow a
\end{array}
$$

and starting symbol S.
Does babaa belong to the language generated by the grammar?

We fill the corresponding table:

$S \notin V_{15}$ then $S \nRightarrow{ }^{*}$ babaa.

Undecidable Problems for Context-Free Grammars/Languages

Definition: An undecidable problem is a decision problem for which it is impossible to construct a single algorithm that always leads to a correct yes-or-no answer.

Example: Halting problem: does this program terminate?

The following problems are undecidable:

- Is the CFG G ambiguous?
- Is the CFL \mathcal{L} inherently ambiguous?
- If \mathcal{L}_{1} and \mathcal{L}_{2} are $C F L$, is $\mathcal{L}_{1} \cap \mathcal{L}_{2}=\emptyset$?
- If \mathcal{L}_{1} and \mathcal{L}_{2} are $C F L$, is $\mathcal{L}_{1}=\mathcal{L}_{2}$? is $\mathcal{L}_{1} \subseteq \mathcal{L}_{2}$?
- If \mathcal{L} is a CFL and \mathcal{P} a RL , is $\mathcal{P}=\mathcal{L}$? is $\mathcal{P} \subseteq \mathcal{L}$?
- If \mathcal{L} is a CFL over Σ, is $\mathcal{L}=\Sigma^{*}$?

Learning Outcome of the Course (revisited)

After completion of this course, the student should be able to:

- Explain and manipulate the different concepts in automata theory and formal languages;
- Have a clear understanding about the equivalence between (non-)deterministic finite automata and regular expressions;
- Acquire a good understanding of the power and the limitations of regular languages and context-free languages;
- Prove properties of languages, grammars and automata with rigorously formal mathematical methods;
- Design automata, regular expressions and context-free grammars accepting or generating a certain language;
- Describe the language accepted by an automata, or generated by a regular expression or a context-free grammar;
- Simplify automata and context-free grammars;
- Determine if a certain word belongs to a language;
- Define Turing machines performing simple tasks;
- Differentiate and manipulate formal descriptions of languages, automata and grammars.

Overview of Next Lecture

Sections 6, 8:

- Push-down automata;
- Turing machines.

