Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2016

Lecture 12 Ana Bove

May 12th 2016

Overview of today's lecture:

- Regular grammars;
- Chomsky hierarchy;
- Simplifications and normal forms for CFL;
- Pumping lemma for CFL.

Recap: Context-Free Grammars

- Proofs about grammars;
- Equivalence between recursive inference, (leftmost/rightmost) derivations and parse trees;
- Ambiguous grammars;
- Inherent ambiguity;
- Regular grammars.

May 12th 2016, Lecture 12 TMV027/DIT321 1/27

Regular Languages and Context-Free Languages

Theorem: If \mathcal{L} is a regular language then \mathcal{L} is context-free.

Proof: If \mathcal{L} is a regular language then $\mathcal{L} = \mathcal{L}(D)$ for a DFA D.

Let
$$D = (Q, \Sigma, \delta, q_0, F)$$
.

We define a CFG $G = (Q, \Sigma, \mathcal{R}, q_0)$ where \mathcal{R} is the set of productions:

- $p \rightarrow aq$ if $\delta(p, a) = q$
- $p \rightarrow \epsilon$ if $p \in F$

We must prove that

- $p \Rightarrow^* wq$ iff $\hat{\delta}(p, w) = q$ and
- $p \Rightarrow^* w$ iff $\hat{\delta}(p, w) \in F$.

Then, in particular $w \in \mathcal{L}(G)$ iff $w \in \mathcal{L}(D)$.

May 12th 2016, Lecture 12

TMV027/DIT321

2/2

Regular Languages and Context-Free Languages

We prove by induction on |w| that

- $p \Rightarrow^* wq$ iff $\hat{\delta}(p,w) = q$ and
- $p \Rightarrow^* w$ iff $\hat{\delta}(p, w) \in F$.

Base case: If |w| = 0 then $w = \epsilon$.

Given the rules in the grammar, $p \Rightarrow^* q$ only when p = q and $p \Rightarrow^* \epsilon$ only when $p \to \epsilon$.

We have $\hat{\delta}(p, \epsilon) = p$ by definition of $\hat{\delta}$ and $p \in F$ by the way we defined the grammar.

Inductive step: Suppose |w| = n + 1, then w = av.

$$\hat{\delta}(p, av) = \hat{\delta}(\delta(p, a), v)$$
 with $|v| = n$.

By IH
$$\delta(p, a) \Rightarrow^* vq$$
 iff $\hat{\delta}(\delta(p, a), v) = q$.

By construction we have a rule $p \to a\delta(p, a)$.

Then $p \Rightarrow a\delta(p, a) \Rightarrow^* avq$ iff $\hat{\delta}(p, av) = \hat{\delta}(\delta(p, a), v) = q$.

By IH $\delta(p, a) \Rightarrow^* v$ iff $\hat{\delta}(\delta(p, a), v) \in F$.

Now $p \Rightarrow a\delta(p, a) \Rightarrow^* av$ iff $\hat{\delta}(p, av) = \hat{\delta}(\delta(p, a), v) \in F$.

May 12th 2016, Lecture 12 TMV027/DIT321 3/2

Chomsky Hierarchy

This hierarchy of grammars was described by Noam Chomsky in 1956:

- Type 0: Unrestricted grammars

 They generate exactly all languages that can be recognised by a Turing machine;
- Type 1: Context-sensitive grammars
 Rules are of the form $\alpha A\beta \to \alpha \gamma \beta$. α and β may be empty, but γ must be non-empty;
- Type 2: Context-free grammars Rules are of the form $A \to \alpha$, α can be empty. Used to produce the syntax of most programming languages;
- Type 3: Regular grammars
 Rules are of the form $A \rightarrow Ba$, $A \rightarrow aB$ or $A \rightarrow \epsilon$.

We have that Type $3 \subset \text{Type } 2 \subset \text{Type } 1 \subset \text{Type } 0$.

May 12th 2016, Lecture 12

TMV027/DIT321

4/27

Generating, Reachable, Useful and Useless Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG. Let $X \in V \cup T$ and let $\alpha, \beta \in (V \cup T)^*$.

Definition: *X* is *reachable* if $S \Rightarrow^* \alpha X \beta$.

(This is similar to accessible states in FA.)

Definition: X is *generating* if $X \Rightarrow^* w$ for some $w \in T^*$.

Definition: The symbol X is *useful* if $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$ for some $w \in T^*$. **Note:** A symbol that is useful should be generating and reachable.

Definition: *X* is *useless* iff it is not useful.

We shall "simplify" the grammars by eliminating useless symbols.

May 12th 2016, Lecture 12 TMV027/DIT321 5/27

Computing the Generating Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the generating symbols of G:

Base Case: All elements of T are generating;

Inductive Step: If a production $A \to \alpha$ is such that all symbols of α are known to be generating, then A is also generating. Observe that α could be ϵ .

(The inductive step is to be applied until no new symbols are found generating.)

Theorem: The procedure above finds all and only the generating symbols of a grammar.

Proof: See Theorem 7.4 in the book.

May 12th 2016, Lecture 12

TMV027/DIT321

6/27

Example: Generating Symbols

Consider the grammar over $\{a\}$ given by the rules:

$$\begin{array}{cccc} S & \rightarrow & aS \mid W \mid U \\ W & \rightarrow & aW \\ U & \rightarrow & a \\ V & \rightarrow & aa \end{array}$$

a is generating.

U and V are generating since $U \rightarrow a$ and $V \rightarrow aa$.

S is generating since $S \to U$.

No other symbol is found generating so W is not generating.

After eliminating the non-generating symbols and their productions we get

$$S
ightarrow aS \mid U \qquad U
ightarrow a \qquad V
ightarrow aa$$

May 12th 2016, Lecture 12 TMV027/DIT321 7/27

Computing the Reachable Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the reachable symbols of G:

Base Case: The start variable S is reachable;

Inductive Step: If A is reachable and we have a production $A \to \alpha$ then all symbols in α are reachable.

(The inductive step is to be applied until no new symbols are found reachable.)

Theorem: The procedure above finds all and only the reachable symbols of a grammar.

Proof: See Theorem 7.6 in the book.

May 12th 2016, Lecture 12

TMV027/DIT32

8/27

Example: Reachable Symbols

Consider the grammar given by the rules:

$$S
ightarrow aB \mid BC$$
 $C
ightarrow b$ $A
ightarrow aA \mid c \mid aDb$ $D
ightarrow B$ $A
ightarrow B \mid C$

S is reachable.

Hence a, B and C are reachable.

Then b and D are reachable.

No other symbol are found reachable so A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

$$S \rightarrow aB \mid BC$$
 $C \rightarrow b$ $B \rightarrow DB \mid C$ $D \rightarrow B$

May 12th 2016, Lecture 12 TMV027/DIT321 9/27

Eliminating Useless Symbols

It is important in which order we check generating and reachable symbols!

Example: Consider the following grammar

$$S \rightarrow AB \mid a \qquad A \rightarrow b$$

If we first check for generating symbols and then for reachability we get

$$S \rightarrow a$$

If we first check for reachability and then for generating we get

$$S \rightarrow a$$
 $A \rightarrow b$

May 12th 2016, Lecture 12 TMV027/DIT321 10/2

Eliminating Useless Symbols

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG and let $\mathcal{L}(G) \neq \emptyset$. Let $G' = (V', T', \mathcal{R}', S)$ be constructed as follows:

- First, eliminate all non-generating symbols and all productions involving one or more of those symbols;
- Then, eliminate all non-reachable symbols and all productions involving one or more of those symbols.

Then G' has no useless symbols and $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof: See Theorem 7.2 in the book.

May 12th 2016, Lecture 12 TMV027/DIT321 11/27

Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

The simplified grammar is:

$$egin{array}{lll} S &
ightarrow & gAe \ A &
ightarrow & ooC \ C &
ightarrow & gI \end{array}$$

What is the language generated by the grammar?

May 12th 2016, Lecture 12 TMV027/DIT321 12/27

Nullable Variables

Definition: A variable A is *nullable* if $A \Rightarrow^* \epsilon$.

Note: Observe that only variables are nullable!

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the nullable variables of G:

Base Case: If $A \to \epsilon$ is a production then A is nullable;

Inductive Step: If $B \to X_1 X_2 \dots X_k$ is a production and all the X_i are nullable then B is also nullable.

(The inductive step is to be applied until no new symbols are found nullable.)

Theorem: The procedure above finds all and only the nullable variables of a grammar.

Proof: See Theorem 7.7 in the book.

May 12th 2016, Lecture 12 TMV027/DIT321 13/27

Eliminating ϵ -Productions

Definition: An ϵ -production is a production of the form $A \to \epsilon$.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the ϵ -production of G:

- Determine all nullable variables of G;
- ② Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \to \alpha\beta$ whenever we have $A \to \alpha B\beta$ and B is nullable.

Note: If $A \rightarrow X_1 X_2 \dots X_k$ and all X_i are nullable, we do not include the case where all the X_i are absent;

③ Construct $G' = (V, T, \mathcal{R}', S)$ where \mathcal{R}' contains all the productions in \mathcal{P} except for the ϵ -productions.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

Proof: See Theorem 7.9 in the book.

May 12th 2016, Lecture 12

TMV027/DIT32:

14/27

Example: Eliminating ϵ -Productions

Example: Consider the grammar given by the rules:

$$S
ightarrow aSb \mid SS \mid \epsilon$$

By eliminating ϵ -productions we obtain

$$S \rightarrow ab \mid aSb \mid S \mid SS$$

Example: Consider the grammar given by the rules:

$$S o AB \qquad A o aAA \mid \epsilon \qquad B o bBB \mid \epsilon$$

By eliminating ϵ -productions we obtain

$$S o A \mid B \mid AB$$
 $A o a \mid aA \mid aAA$ $B o b \mid bB \mid bBB$

May 12th 2016, Lecture 12 TMV027/DIT321 15/27

Eliminating Unit Productions

Definition: A *unit production* is a production of the form $A \rightarrow B$.

(This is similar to ϵ -transitions in a ϵ -NFA.)

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the unit production of G:

- ① Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \to \alpha$ whenever we have $A \to B$ and $B \to \alpha$;
- ② Construct $G' = (V, T, \mathcal{R}', S)$ where \mathcal{R}' contains all the productions in \mathcal{P} except for the unit production.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G)$.

Proof: See Theorem 7.13 in the book.

May 12th 2016, Lecture 12

TMV027/DIT32

16/27

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

By eliminating unit productions we obtain:

May 12th 2016, Lecture 12 TMV027/DIT321 17/27

Simplification of a Grammar

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG whose language contains at least one string other than ϵ . If we construct G' by

- **①** First, eliminating ϵ -productions;
- Then, eliminating unit productions;
- Finally, eliminating useless symbols;

using the procedures shown before then $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

In addition, G' contains no ϵ -productions, no unit productions and no useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

May 12th 2016, Lecture 12 TMV027/DIT321 18/2

Chomsky Normal Form

Definition: A CFG is in *Chomsky Normal Form* (CNF) if *G* has no useless symbols and all the productions are of the form $A \to BC$ or $A \to a$.

Note: Observe that a CFG that is in CNF has no unit or ϵ -productions!

Theorem: For any CFG G whose language contains at least one string other than ϵ , there is a CFG G' that is in Chomsky Normal Form and such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

Proof: See Theorem 7.16 in the book.

May 12th 2016, Lecture 12 TMV027/DIT321 19/27

Constructing a Chomsky Normal Form

Let us assume G has no ϵ - or unit productions and no useless symbols.

Then every production is of the form $A \to a$ or $A \to X_1 X_2 \dots X_k$ for k > 1.

If X_i is a terminal introduce a new variable A_i and a new rule $A_i \to X_i$ (if no such rule exists for X_i with a variable that has no other rules).

Use A_i in place of X_i in any rule whose body has length > 1.

Now, all rules are of the form $B \to b$ or $B \to C_1 C_2 \dots C_k$ with all C_j variables.

Introduce k-2 new variables and break each rule $B \to C_1 C_2 \dots C_k$ as

$$B \rightarrow C_1D_1 \quad D_1 \rightarrow C_2D_2 \quad \cdots \quad D_{k-2} \rightarrow C_{k-1}C_k$$

May 12th 2016. Lecture 12

TMV027/DIT321

20/27

Example: Chomsky Normal Form

Example: Consider the grammar given by the rules:

$$S
ightarrow aSb \mid SS \mid ab$$

We first obtain

$$S \rightarrow ASB \mid SS \mid AB$$
 $A \rightarrow a$ $B \rightarrow b$

Then we build a grammar in Chomsky Normal Form

$$S \rightarrow AC \mid SS \mid AB$$
 $A \rightarrow a$
 $C \rightarrow SB$ $B \rightarrow b$

Example: Observe however that

$$S
ightarrow aa \mid a$$

is NOT equivalent to

$$S o SS \mid a$$

Instead we need to give

$$S \rightarrow AA \mid a \qquad A \rightarrow a$$

May 12th 2016, Lecture 12 TMV027/DIT321 21/27

Pumping Lemma for Left Regular Languages

Let G = (V, T, R, S) be a left regular grammar and let n = |V|.

If $a_1 a_2 \dots a_m \in \mathcal{L}(G)$ for m > n, then any derivation

$$S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \ldots \Rightarrow a_1 \ldots a_i A \Rightarrow \ldots \Rightarrow a_1 \ldots a_j A \Rightarrow \ldots \Rightarrow a_1 \ldots a_m$$

has length m and there is at least one variable A which is used twice.

(Pigeon-hole principle)

If $x = a_1 \dots a_i$, $y = a_{i+1} \dots a_j$ and $z = a_{j+1} \dots a_m$, we have $|xy| \leq n$ and $xy^k z \in \mathcal{L}(G)$ for all k.

May 12th 2016, Lecture 12

TMV027/DIT321

22/27

Pumping Lemma for Context-Free Languages

Theorem: Let \mathcal{L} be a context-free language.

Then, there exists a constant n—which depends on \mathcal{L} —such that for every $w \in \mathcal{L}$ with $|w| \geqslant n$, it is possible to break w into S strings S, S, S, S, and S such that S = S xuyvz and

- $|uyv| \leqslant n$;
- $uv \neq \epsilon$, that is, either u or v is not empty;

Proof: (Sketch)

We can assume that the language is presented by a grammar in Chomsky Normal Form, working with $\mathcal{L} - \{\epsilon\}$.

Observe that parse trees for grammars in CNF have at most 2 children.

Note: If m+1 is the height of a parse tree for w, then $|w| \leq 2^m$. (Prove this as an exercise!)

May 12th 2016, Lecture 12 TMV027/DIT321 23/27

Proof Sketch: Pumping Lemma for Context-Free Languages

Let |V| = m > 0. Take $n = 2^m$ and w such that $|w| \geqslant 2^m$.

Any parse tree for w has a path from root to leave of length at least m+1.

Let A_0, A_1, \ldots, A_k be the variables in the path. We have $k \ge m$.

Then at least 2 of the last m+1 variables should be the same, say A_i and A_i .

Observe figures 7.6 and 7.7 in pages 282-283.

See Theorem 7.18 in the book for the complete proof.

May 12th 2016, Lecture 12

TMV027/DIT32:

24/27

Example: Pumping Lemma for Context-Free Languages

Consider the following grammar:

$$S \rightarrow AC \mid AB$$

$$A \rightarrow a$$

Consider the derivation for the string aaaabbbb

$$S \Rightarrow AC \Rightarrow aC \Rightarrow aSB \Rightarrow aACB \Rightarrow aaCB \Rightarrow aaSBB \Rightarrow aaABBB \Rightarrow aaabBB \Rightarrow aaabBB \Rightarrow aaabbB \Rightarrow aaabbb$$

Consider the parse tree and the last 2 occurrences of the symbol S.

Then we have x = a, u = a, y = ab, v = b, z = b.

May 12th 2016, Lecture 12 TMV027/DIT321 25/27

Example: Pumping Lemma for Context-Free Languages

Lemma: The language $\mathcal{L} = \{a^m b^m c^m \mid m > 0\}$ is not context-free.

Proof: Let us assume \mathcal{L} is context-free.

Let n be the constant stated by the Pumping lemma.

Let $w = a^n b^n c^n$; we have that $|w| \ge n$.

By the PL we know that w = xuyvz such that

$$|uyv| \leqslant n$$
 $uv \neq \epsilon$ $\forall k \geqslant 0. \ xu^k yv^k z \in \mathcal{L}$

Since $|uyv| \le n$ there is one letter $d \in \{a, b, c\}$ that does not occur in uyv.

Since $uv \neq \epsilon$ there is another letter $e \in \{a, b, c\}, e \neq d$ that *does* occur in uv.

Then e has more occurrences than d in xu^2yv^2z and this contradicts the fact that $xu^2yv^2z\in\mathcal{L}$.

May 12th 2016, Lecture 12 TMV027/DIT321 26/2

Overview of Next Lecture

Sections 7.3–7.4:

- Closure properties of CFL;
- Decision properties of CFL;
- Guest lecture by Andreas Abel: Putting Formal Languages to Work.

Note: Next course evaluation meeting: Thursday 19/5 after the lecture.

May 12th 2016, Lecture 12 TMV027/DIT321 27/27