
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2016

Lecture 12
Ana Bove

May 12th 2016

Overview of today’s lecture:

Regular grammars;

Chomsky hierarchy;

Simplifications and normal forms for CFL;

Pumping lemma for CFL.

Recap: Context-Free Grammars

Proofs about grammars;

Equivalence between recursive inference, (leftmost/rightmost)
derivations and parse trees;

Ambiguous grammars;

Inherent ambiguity;

Regular grammars.

May 12th 2016, Lecture 12 TMV027/DIT321 1/27



Regular Languages and Context-Free Languages

Theorem: If L is a regular language then L is context-free.

Proof: If L is a regular language then L = L(D) for a DFA D.

Let D = (Q,Σ, δ, q0,F ).

We define a CFG G = (Q,Σ,R, q0) where R is the set of productions:

p → aq if δ(p, a) = q

p → ε if p ∈ F

We must prove that

p ⇒∗ wq iff δ̂(p,w) = q and

p ⇒∗ w iff δ̂(p,w) ∈ F .

Then, in particular w ∈ L(G ) iff w ∈ L(D).
May 12th 2016, Lecture 12 TMV027/DIT321 2/27

Regular Languages and Context-Free Languages

We prove by induction on |w | that

p ⇒∗ wq iff δ̂(p,w) = q and
p ⇒∗ w iff δ̂(p,w) ∈ F .

Base case: If |w | = 0 then w = ε.
Given the rules in the grammar, p ⇒∗ q only when p = q and p ⇒∗ ε only
when p → ε.
We have δ̂(p, ε) = p by definition of δ̂ and p ∈ F by the way we defined
the grammar.

Inductive step: Suppose |w | = n + 1, then w = av .
δ̂(p, av) = δ̂(δ(p, a), v) with |v | = n.
By IH δ(p, a)⇒∗ vq iff δ̂(δ(p, a), v) = q.
By construction we have a rule p → aδ(p, a).
Then p ⇒ aδ(p, a)⇒∗ avq iff δ̂(p, av) = δ̂(δ(p, a), v) = q.
By IH δ(p, a)⇒∗ v iff δ̂(δ(p, a), v) ∈ F .
Now p ⇒ aδ(p, a)⇒∗ av iff δ̂(p, av) = δ̂(δ(p, a), v) ∈ F .
May 12th 2016, Lecture 12 TMV027/DIT321 3/27



Chomsky Hierarchy

This hierarchy of grammars was described by Noam Chomsky in 1956:

Type 0: Unrestricted grammars
They generate exactly all languages that can be recognised
by a Turing machine;

Type 1: Context-sensitive grammars
Rules are of the form αAβ → αγβ.
α and β may be empty, but γ must be non-empty;

Type 2: Context-free grammars
Rules are of the form A→ α, α can be empty.
Used to produce the syntax of most programming languages;

Type 3: Regular grammars
Rules are of the form A→ Ba, A→ aB or A→ ε.

We have that Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0.

May 12th 2016, Lecture 12 TMV027/DIT321 4/27

Generating, Reachable, Useful and Useless Symbols

Let G = (V ,T ,R, S) be a CFG.
Let X ∈ V ∪ T and let α, β ∈ (V ∪ T )∗.

Definition: X is reachable if S ⇒∗ αXβ.
(This is similar to accessible states in FA.)

Definition: X is generating if X ⇒∗ w for some w ∈ T ∗.

Definition: The symbol X is useful if S ⇒∗ αXβ ⇒∗ w for some w ∈ T ∗.
Note: A symbol that is useful should be generating and reachable.

Definition: X is useless iff it is not useful.

We shall “simplify” the grammars by eliminating useless symbols.
May 12th 2016, Lecture 12 TMV027/DIT321 5/27



Computing the Generating Symbols

Let G = (V ,T ,R, S) be a CFG.

The following inductive procedure computes the generating symbols of G :

Base Case: All elements of T are generating;

Inductive Step: If a production A→ α is such that all symbols of α are
known to be generating, then A is also generating.
Observe that α could be ε.

(The inductive step is to be applied until no new symbols are found generating.)

Theorem: The procedure above finds all and only the generating symbols
of a grammar.

Proof: See Theorem 7.4 in the book.

May 12th 2016, Lecture 12 TMV027/DIT321 6/27

Example: Generating Symbols

Consider the grammar over {a} given by the rules:

S → aS | W | U
W → aW
U → a
V → aa

a is generating.

U and V are generating since U → a and V → aa.

S is generating since S → U.

No other symbol is found generating so W is not generating.

After eliminating the non-generating symbols and their productions we get

S → aS | U U → a V → aa

May 12th 2016, Lecture 12 TMV027/DIT321 7/27



Computing the Reachable Symbols

Let G = (V ,T ,R, S) be a CFG.

The following inductive procedure computes the reachable symbols of G :

Base Case: The start variable S is reachable;

Inductive Step: If A is reachable and we have a production A→ α then all
symbols in α are reachable.

(The inductive step is to be applied until no new symbols are found reachable.)

Theorem: The procedure above finds all and only the reachable symbols
of a grammar.

Proof: See Theorem 7.6 in the book.

May 12th 2016, Lecture 12 TMV027/DIT321 8/27

Example: Reachable Symbols

Consider the grammar given by the rules:

S → aB | BC C → b
A→ aA | c | aDb D → B
B → DB | C

S is reachable.

Hence a, B and C are reachable.

Then b and D are reachable.

No other symbol are found reachable so A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

S → aB | BC C → b
B → DB | C D → B

May 12th 2016, Lecture 12 TMV027/DIT321 9/27



Eliminating Useless Symbols

It is important in which order we check generating and reachable symbols!

Example: Consider the following grammar

S → AB | a A→ b

If we first check for generating symbols and then for reachability we get

S → a

If we first check for reachability and then for generating we get

S → a A→ b

May 12th 2016, Lecture 12 TMV027/DIT321 10/27

Eliminating Useless Symbols

Theorem: Let G = (V ,T ,R,S) be a CFG and let L(G ) 6= ∅.
Let G ′ = (V ′,T ′,R′, S) be constructed as follows:

1 First, eliminate all non-generating symbols and all productions
involving one or more of those symbols;

2 Then, eliminate all non-reachable symbols and all productions
involving one or more of those symbols.

Then G ′ has no useless symbols and L(G ) = L(G ′).

Proof: See Theorem 7.2 in the book.

May 12th 2016, Lecture 12 TMV027/DIT321 11/27



Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

S → gAe | aYB | CY A → bBY | ooC
B → dd | D C → jVB | gl
D → n U → kW
V → baXXX | oV W → c
X → fV Y → Yhm

The simplified grammar is:
S → gAe
A → ooC
C → gl

What is the language generated by the grammar?

May 12th 2016, Lecture 12 TMV027/DIT321 12/27

Nullable Variables

Definition: A variable A is nullable if A⇒∗ ε.
Note: Observe that only variables are nullable!

Let G = (V ,T ,R, S) be a CFG.

The following inductive procedure computes the nullable variables of G :

Base Case: If A→ ε is a production then A is nullable;

Inductive Step: If B → X1X2 . . .Xk is a production and all the Xi are
nullable then B is also nullable.

(The inductive step is to be applied until no new symbols are found nullable.)

Theorem: The procedure above finds all and only the nullable variables of
a grammar.

Proof: See Theorem 7.7 in the book.
May 12th 2016, Lecture 12 TMV027/DIT321 13/27



Eliminating ε-Productions

Definition: An ε-production is a production of the form A→ ε.

Let G = (V ,T ,R, S) be a CFG.

The following procedure eliminates the ε-production of G :

1 Determine all nullable variables of G ;
2 Build P with all the productions of R plus a rule A→ αβ whenever

we have A→ αBβ and B is nullable.
Note: If A→ X1X2 . . .Xk and all Xi are nullable, we do not include
the case where all the Xi are absent;

3 Construct G ′ = (V ,T ,R′,S) where R′ contains all the productions
in P except for the ε-productions.

Theorem: The grammar G ′ constructed from the grammar G as above is
such that L(G ′) = L(G )− {ε}.

Proof: See Theorem 7.9 in the book.
May 12th 2016, Lecture 12 TMV027/DIT321 14/27

Example: Eliminating ε-Productions

Example: Consider the grammar given by the rules:

S → aSb | SS | ε

By eliminating ε-productions we obtain

S → ab | aSb | S | SS

Example: Consider the grammar given by the rules:

S → AB A→ aAA | ε B → bBB | ε

By eliminating ε-productions we obtain

S → A | B | AB A→ a | aA | aAA B → b | bB | bBB

May 12th 2016, Lecture 12 TMV027/DIT321 15/27



Eliminating Unit Productions

Definition: A unit production is a production of the form A→ B.
(This is similar to ε-transitions in a ε-NFA.)

Let G = (V ,T ,R, S) be a CFG.

The following procedure eliminates the unit production of G :

1 Build P with all the productions of R plus a rule A→ α whenever we
have A→ B and B → α;

2 Construct G ′ = (V ,T ,R′,S) where R′ contains all the productions
in P except for the unit production.

Theorem: The grammar G ′ constructed from the grammar G as above is
such that L(G ′) = L(G ).

Proof: See Theorem 7.13 in the book.
May 12th 2016, Lecture 12 TMV027/DIT321 16/27

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

S → CBh | D A → aaC
B → Sf | ggg C → cA | d | C
D → E | SABC E → be

By eliminating unit productions we obtain:

S → CBh | be | SABC A → aaC
B → Sf | ggg C → cA | d
D → be | SABC E → be

May 12th 2016, Lecture 12 TMV027/DIT321 17/27



Simplification of a Grammar

Theorem: Let G = (V ,T ,R,S) be a CFG whose language contains at
least one string other than ε. If we construct G ′ by

1 First, eliminating ε-productions;

2 Then, eliminating unit productions;

3 Finally, eliminating useless symbols;

using the procedures shown before then L(G ′) = L(G )− {ε}.

In addition, G ′ contains no ε-productions, no unit productions and no
useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

May 12th 2016, Lecture 12 TMV027/DIT321 18/27

Chomsky Normal Form

Definition: A CFG is in Chomsky Normal Form (CNF) if G has no useless
symbols and all the productions are of the form A→ BC or A→ a.

Note: Observe that a CFG that is in CNF has no unit or ε-productions!

Theorem: For any CFG G whose language contains at least one string
other than ε, there is a CFG G ′ that is in Chomsky Normal Form and such
that L(G ′) = L(G )− {ε}.

Proof: See Theorem 7.16 in the book.

May 12th 2016, Lecture 12 TMV027/DIT321 19/27



Constructing a Chomsky Normal Form

Let us assume G has no ε- or unit productions and no useless symbols.

Then every production is of the form A→ a or A→ X1X2 . . .Xk for k > 1.

If Xi is a terminal introduce a new variable Ai and a new rule Ai → Xi

(if no such rule exists for Xi with a variable that has no other rules).

Use Ai in place of Xi in any rule whose body has length > 1.

Now, all rules are of the form B → b or B → C1C2 . . .Ck with all Cj

variables.

Introduce k − 2 new variables and break each rule B → C1C2 . . .Ck as

B → C1D1 D1 → C2D2 · · · Dk−2 → Ck−1Ck

May 12th 2016, Lecture 12 TMV027/DIT321 20/27

Example: Chomsky Normal Form

Example: Consider the grammar given by the rules:

S → aSb | SS | ab

We first obtain
S → ASB | SS | AB A→ a B → b

Then we build a grammar in Chomsky Normal Form

S → AC | SS | AB A → a
C → SB B → b

Example: Observe however that
S → aa | a

is NOT equivalent to
S → SS | a

Instead we need to give
S → AA | a A→ a

May 12th 2016, Lecture 12 TMV027/DIT321 21/27



Pumping Lemma for Left Regular Languages

Let G = (V ,T ,R, S) be a left regular grammar and let n = |V |.

If a1a2 . . . am ∈ L(G ) for m > n, then any derivation

S ⇒ a1A1 ⇒ a1a2A2 ⇒ . . .⇒ a1 . . . aiA⇒ . . .⇒ a1 . . . ajA⇒ . . .⇒ a1 . . . am

has length m and there is at least one variable A which is used twice.

(Pigeon-hole principle)

If x = a1 . . . ai , y = ai+1 . . . aj and z = aj+1 . . . am, we have |xy | 6 n and
xykz ∈ L(G ) for all k.

May 12th 2016, Lecture 12 TMV027/DIT321 22/27

Pumping Lemma for Context-Free Languages

Theorem: Let L be a context-free language.
Then, there exists a constant n—which depends on L—such that for every
w ∈ L with |w | > n, it is possible to break w into 5 strings x , u, y , v and z
such that w = xuyvz and

1 |uyv | 6 n;

2 uv 6= ε, that is, either u or v is not empty;

3 ∀k > 0. xukyvkz ∈ L.

Proof: (Sketch)

We can assume that the language is presented by a grammar in Chomsky Normal Form,
working with L − {ε}.

Observe that parse trees for grammars in CNF have at most 2 children.

Note: If m + 1 is the height of a parse tree for w , then |w | 6 2m.
(Prove this as an exercise!)

May 12th 2016, Lecture 12 TMV027/DIT321 23/27



Proof Sketch: Pumping Lemma for Context-Free
Languages

Let |V | = m > 0. Take n = 2m and w such that |w | > 2m.

Any parse tree for w has a path from root to leave of length at least m + 1.

Let A0,A1. . . . ,Ak be the variables in the path. We have k > m.

Then at least 2 of the last m + 1 variables should be the same,
say Ai and Aj .

Observe figures 7.6 and 7.7 in pages 282–283.

See Theorem 7.18 in the book for the complete proof.

May 12th 2016, Lecture 12 TMV027/DIT321 24/27

Example: Pumping Lemma for Context-Free Languages

Consider the following grammar:

S → AC | AB A → a
B → b C → SB

Consider the derivation for the string aaaabbbb

S ⇒ AC ⇒ aC ⇒ aSB ⇒ aACB ⇒ aaCB ⇒ aaSBB ⇒ aaABBB
⇒ aaaBBB ⇒ aaabBB ⇒ aaabbB ⇒ aaabbb

Consider the parse tree and the last 2 occurrences of the symbol S .

Then we have x = a, u = a, y = ab, v = b, z = b.

May 12th 2016, Lecture 12 TMV027/DIT321 25/27



Example: Pumping Lemma for Context-Free Languages

Lemma: The language L = {ambmcm | m > 0} is not context-free.

Proof: Let us assume L is context-free.

Let n be the constant stated by the Pumping lemma.

Let w = anbncn; we have that |w | > n.

By the PL we know that w = xuyvz such that

|uyv | 6 n uv 6= ε ∀k > 0. xukyv kz ∈ L

Since |uyv | 6 n there is one letter d ∈ {a, b, c} that does not occur in uyv .

Since uv 6= ε there is another letter e ∈ {a, b, c}, e 6= d that does occur in uv .

Then e has more occurrences than d in xu2yv 2z and this contradicts the fact that

xu2yv 2z ∈ L.

May 12th 2016, Lecture 12 TMV027/DIT321 26/27

Overview of Next Lecture

Sections 7.3–7.4:

Closure properties of CFL;

Decision properties of CFL;

Guest lecture by Andreas Abel: Putting Formal Languages to Work.

Note: Next course evaluation meeting: Thursday 19/5 after the lecture.

May 12th 2016, Lecture 12 TMV027/DIT321 27/27


