# Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2016

#### Lecture 10 Ana Bove

May 2nd 2016

#### **Overview of today's lecture:**

- Context-free grammars;
- Derivations;
- Parse trees;
- Proofs in grammars.

### Recap: Regular Languages

- Decision properties of RL:
  - Is it empty?
  - Does it contain this word?
  - Contains  $\epsilon$ , contains at most  $\epsilon$ , is infinite?
- Equivalence of languages using table-filling algorithm;
- Minimisation of DFA using table-filling algorithm.

# Context-free Grammars

We have seen that not all languages are regular.

Context-free grammars (CFG) define the so called context-free languages.

They have been developed in the mid-1950s by Noam Chomsky.

We will see (next lecture) that

regular languages  $\subset$  context-free languages

CFG play an important role in the description and design of programming languages and compilers, for example, for the implementation of parsers.

May 2nd 2016, Lecture 10

TMV027/DIT321

Example: Palindromes

Let us consider the language  $\mathcal{L}$  of *palindromes* over  $\Sigma = \{0, 1\}$ .

That is,  $\mathcal{L} = \{ w \in \Sigma^* \mid w = \operatorname{rev}(w) \}.$ 

Example of palindromes over  $\Sigma$  are  $\epsilon$ , 0110, 00011000, 010.

We can use the Pumping Lemma for RL to show that  $\mathcal{L}$  is not regular.

How can  $\mathcal{L}$  be defined?

We have that (inductive definition):

- $\epsilon$ , 0 and 1 are in  $\mathcal{L}$ ;
- if  $w \in \mathcal{L}$  then 0w0 and 1w1 are also in  $\mathcal{L}$ .

# Example: CFG for Palindromes

| Ρ | $\rightarrow$ | $\epsilon$   |
|---|---------------|--------------|
| Ρ | $\rightarrow$ | 0            |
| Ρ | $\rightarrow$ | 1            |
| Ρ | $\rightarrow$ | 0 <i>P</i> 0 |
| Ρ | $\rightarrow$ | 1P1          |

The *variable P* represents the set of strings that are palindromes.

The *rules* say how to construct the strings in the language.

May 2nd 2016, Lecture 10

TMV027/DIT321

4/28

# Example: CFG for Simple Expressions

We can define several sets in a grammar.

**Example:** Here we define 2 sets: those representing simple numerical expressions (denoted by E) and those representing Boolean expressions (denoted by B).

| E<br>E<br>E | ightarrow<br>ightarrow | 0<br>1<br>E + E                         |
|-------------|------------------------|-----------------------------------------|
| Ε           | $\rightarrow$          | if <i>B</i> then <i>E</i> else <i>E</i> |
| В           | $\rightarrow$          | True                                    |
| В           | $\rightarrow$          | False                                   |
| В           | $\rightarrow$          | E < E                                   |
| В           | $\rightarrow$          | E == E                                  |

### **Compact Notation**

We can group all productions defining elements in a certain set.

Example: Palindromes can be defined as

 $P 
ightarrow \epsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$ 

Example: The expressions can be defined as

$$egin{array}{rcl} E & 
ightarrow & 0 \mid 1 \mid E+E \mid {
m if} \ B \ {
m then} \ E \ {
m else} \ E \ B \ 
ightarrow & {
m True} \mid {
m False} \mid E < E \mid E == E \end{array}$$

May 2nd 2016, Lecture 10

TMV027/DIT321

# **Context-Free Grammars**

**Definition:** A *context-free grammar* is a 4-tuple  $G = (V, T, \mathcal{R}, S)$  where:

- V is a finite set of *variables* or *non-terminals*: each variable represents a language or set of strings;
- *T* is a finite set of *symbols* or *terminals*: think of *T* as the alphabet of the language we are defining;
- $\mathcal{R}$  is a finite set of *rules* or *productions* which recursively define the language. Each production consists of:
  - A variable being defined in the production;
  - The symbol " $\rightarrow$ ";
  - A string of 0 or more terminals and variables called the *body* of the production;
- S is the *start variable* and represents the language we are defining; other variables define the auxiliary classes needed to define our language.

# Example: C++ Compound Statements

A context free grammar for statements:

$$({S, LC, C, E, Id, LLoD, L, D}, {a, ..., A, ..., 0, ..., (,), ...}, \mathcal{R}, S)$$

with  ${\mathcal R}$  as follows:

$$S \rightarrow \{LC\}$$

$$LC \rightarrow \epsilon \mid C \ LC$$

$$C \rightarrow S \mid if (E) \ C \mid if (E) \ C \ else \ C \mid$$

$$while (E) \ C \mid do \ C \ while (E) \mid for \ (C \ E; E) \ C \mid$$

$$case \ E : \ C \mid switch \ (E) \ C \mid return \ E; \mid goto \ Id;$$

$$break; \mid continue;$$

$$E \rightarrow \dots$$

$$Id \rightarrow L \ LLoD$$

$$LLoD \quad J \ LLoD \mid D \ LLoD \mid \epsilon$$

$$L \rightarrow A \mid B \mid \dots \mid Z \mid a \mid b \mid \dots \mid Z$$

$$D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

May 2nd 2016, Lecture 10

TMV027/DIT321

8/28

# Notation for Context-Free Grammars

We use the following convention when working with CFG:

- *a*, *b*, *c*, ..., 0, 1, ..., (, ), +, %, ... are terminal symbols;
- A, B, C, ... are variables (non-terminals);
- $w, x, y, z, \ldots$  are strings of terminals;
- $X, Y, \ldots$  are either a terminal or a variable;
- α, β, γ,... are strings of terminals and/or variables;
   In particular, they can also represent strings with *only* variables.

### Working with Grammars

We use the productions of a CFG to infer that a string w is in the language of a given variable.

**Example:** Let us see if 0110110 is a palindrome.

We can do this in 2 (equivalent) ways:

Recursive inference: From body to head.

| 1) | 0       | is palindrome by rule | P ightarrow 0                  |
|----|---------|-----------------------|--------------------------------|
| 2) | 101     | is palindrome using   | 1) and rule $P  ightarrow 1P1$ |
| 3) | 11011   | is palindrome using   | 2) and rule $P  ightarrow 1P1$ |
| 4) | 0110110 | is palindrome using   | 3) and rule $P  ightarrow 0P0$ |

Derivation: From head to body using the rules in the opposite order. Notation:  $\Rightarrow$ 

 $P \Rightarrow 0P0 \Rightarrow 01P10 \Rightarrow 011P110 \Rightarrow 0110110$ 

May 2nd 2016, Lecture 10

Formal Definition of a Derivation

Let  $G = (V, T, \mathcal{R}, S)$  be a CFG.

**Definition:** Let  $A \in V$  and  $\alpha, \beta \in (V \cup T)^*$ . Let  $A \to \gamma \in \mathcal{R}$ . Then  $\alpha A\beta \Rightarrow \alpha \gamma \beta$  is *one derivation step* (alternative  $\alpha A\beta \stackrel{G}{\Rightarrow} \alpha \gamma \beta$ ).

**Example:**  $B \Rightarrow E == E \Rightarrow 0 == E \Rightarrow 0 == E + E \Rightarrow 0 == E + 1 \Rightarrow 0 == 0 + 1$ 

### Reflexive-transitive Closure of a Derivation

We can define a relation performing zero or more derivation steps.

**Definition:** The *reflexive-transitive closure* of  $\Rightarrow$  is the relation  $\Rightarrow^*$  (alternative  $\Rightarrow^*$ ) defined as follows:

$$\frac{\alpha \Rightarrow^* \beta \qquad \beta \Rightarrow \gamma}{\alpha \Rightarrow^* \gamma}$$

**Example:**  $B \Rightarrow^* 0 == 0 + 1$ .

**Note:** We denote  $A \Rightarrow^n \alpha$  when  $\alpha$  is derived from A in *n* steps.

May 2nd 2016, Lecture 10

TMV027/DIT32

12/28

# Leftmost and Rightmost Derivations

At every derivation step we can choose to replace *any* variable by the right-hand side of one of its productions.

Two particular derivations are:

Leftmost derivation: Notations:  $\stackrel{lm}{\Rightarrow}$  and  $\stackrel{lm}{\Rightarrow}^*$ . At each step we choose to replace the *leftmost variable*. **Example:**  $B \stackrel{lm}{\Rightarrow}^* 0 == 0 + 1$   $B \stackrel{lm}{\Rightarrow} E == E \stackrel{lm}{\Rightarrow} 0 == E \stackrel{lm}{\Rightarrow} 0 == E + E \stackrel{lm}{\Rightarrow} 0 == 0 + E \stackrel{lm}{\Rightarrow} 0 == 0 + 1$ Rightmost derivation: Notations:  $\stackrel{rm}{\Rightarrow}$  and  $\stackrel{rm}{\Rightarrow}^*$ . At each step we choose to replace the *rightmost variable*. **Example:**  $B \stackrel{rm}{\Rightarrow}^* 0 == 0 + 1$  $B \stackrel{rm}{\Rightarrow} E == E \stackrel{rm}{\Rightarrow} E == E + E \stackrel{rm}{\Rightarrow} E == E + 1 \stackrel{rm}{\Rightarrow} E == 0 + 1 \stackrel{rm}{\Rightarrow} 0 == 0 + 1$ 

May 2nd 2016, Lecture 10

TMV027/DIT32

#### **Observations on Derivations**

**Observe:** If we have  $A \Rightarrow^* \gamma$  then we also have  $\alpha A \beta \Rightarrow^* \alpha \gamma \beta$ .

The same sequence of steps that took us from A to  $\gamma$  will also take us from  $\alpha A\beta$  to  $\alpha\gamma\beta$ .

**Example:** We have  $E \Rightarrow^* 0 + 1$  since  $E \Rightarrow E + E \Rightarrow 0 + E \Rightarrow 0 + 1$ .

This same derivation justifies  $E == E \Rightarrow^* E == 0 + 1$  since

 $E == E \Rightarrow E == E + E \Rightarrow E == 0 + E \Rightarrow E == 0 + 1$ 

May 2nd 2016, Lecture 10

TMV027/DIT32

#### Observations on Derivations

**Observe:** If we have  $A \Rightarrow X_1 X_2 \dots X_k \Rightarrow^* w$ , then we can break w into pieces  $w_1, w_2, \dots, w_k$  such that  $X_i \Rightarrow^* w_i$ . If  $X_i$  is a terminal then  $X_i = w_i$ .

This can be showed by proving (by induction on the length of the derivation) that if  $X_1X_2...X_k \Rightarrow^* \alpha$  then all positions of  $\alpha$  that come from expansion of  $X_i$  are to the left of all positions that come from the expansion of  $X_j$  if i < j.

To obtain  $X_i \Rightarrow^* w_i$  from  $A \Rightarrow^* w$  we need to remove all positions of the sentential form (see next slide) that are to the left and to the right of all the positions derived from  $X_i$ , and all steps not relevant for the derivation of  $w_i$  from  $X_i$ .

**Example:** Let  $B \Rightarrow E == E \Rightarrow E == E + E \Rightarrow E == E + 0 \Rightarrow E == E + E + 0 \Rightarrow E == 0 + E + 0 \Rightarrow 1 == 0 + E + 0 \Rightarrow 1 == 0 + 1 + 0.$ 

The derivation from the middle *E* in the sentential form E == E + E is  $E \Rightarrow E + E \Rightarrow 0 + E \Rightarrow 0 + 1$ . May 2nd 2016, Lecture 10 TMV027/DIT321

# Sentential Forms

Derivations from the start variable have an special role.

**Definition:** Let  $G = (V, T, \mathcal{R}, S)$  be a CFG and let  $\alpha \in (V \cup T)^*$ . Then  $S \Rightarrow^* \alpha$  is called a *sentential form*.

We say *left sentential form* if  $S \stackrel{lm}{\Rightarrow}^* \alpha$  or *right sentential form* if  $S \stackrel{rm}{\Rightarrow}^* \alpha$ .

**Example:** A sentential form  $P \Rightarrow^* 010P010$  since

 $P \Rightarrow 0P0 \Rightarrow 01P10 \Rightarrow 010P010$ 

May 2nd 2016, Lecture 10

TMV027/DIT321

Language of a Grammar

**Definition:** Let  $G = (V, T, \mathcal{R}, S)$  be a CFG.

The language of G, denoted  $\mathcal{L}(G)$  is the set of terminal strings that can be derived from the start variable.

$$\mathcal{L}(G) = \{ w \in T^* \mid S \stackrel{G}{\Rightarrow}^* w \}$$

**Definition:** If a language  $\mathcal{L}$  is the language of a certain context-free grammar, then  $\mathcal{L}$  is said to be a *context-free language*.

#### **Examples of Context Free Grammars**

**Example:** Construct a CFG generating  $\{0^i 1^j \mid j \ge i \ge 0\}$ .

 $S \rightarrow \epsilon \mid 0S1 \mid S1$ 

**Example:** Construct a CFG generating  $\{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}$ .

 $S \rightarrow \epsilon \mid 0S1 \mid 1S0 \mid SS$ 

**Example:** Construct a grammar for the following language:

 $\{a^{n}b^{n}c^{m}d^{m} \mid n, m \ge 1\} \cup \{a^{n}b^{m}c^{m}d^{n} \mid n, m \ge 1\}$   $S \rightarrow AB \mid C$   $A \rightarrow aAb \mid ab$   $B \rightarrow cBd \mid cd$   $C \rightarrow aCd \mid aDd$   $D \rightarrow bDc \mid bc$ 

May 2nd 2016, Lecture 10

TMV027/DIT321

18/28

#### Parse Trees

*Parse trees* are a way to represent derivations.

A parse tree reflects the internal structure of a word of the language.

Using parse trees it becomes very clear which is the variable that was replaced at each step.

In addition, it becomes clear which terminal symbols where generated/derived form a particular variable.

Parse trees are very important in compiler theory.

In a compiler, a *parser* takes the source code into its *abstract* tree, which is an abstract version of the parse tree.

This parse tree is the structure of the program.

### Parse Trees

**Definition:** Let  $G = (V, T, \mathcal{R}, S)$  be a CFG. The *parse trees* for G are trees with the following conditions:

- Nodes are labelled with a variable;
- Leaves are either variables, terminals or  $\epsilon$ ;
- If a node is labelled A and it has children labelled X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub> respectively from left to right, then it must exist in R a production of the form A → X<sub>1</sub>X<sub>2</sub>...X<sub>n</sub>.

**Note:** If a leaf is  $\epsilon$  it should be the only child of its parent A and there should be a production  $A \rightarrow \epsilon$ .

**Note:** Of particular importance are the parse trees with root *S*.

**Exercise:** Construct the parse trees for 0 = E + 1 and for 001100.

May 2nd 2016, Lecture 10

TMV027/DIT321

Height of a Parse Tree

**Definition:** The *height* of a parse tree is the maximum length of a path from the root of the tree to one of its leaves.

**Observe:** We count the *edges* in the tree, and not the number of nodes and the leaf in the path.

**Example:** The height of the parse tree for 0 = E + 1 is 3 and the one for 001100 is 5.

# Yield of a Parse Tree

**Definition:** A *yield* of a parse tree is the string resulted from concatenating all the leaves of the tree from left to right.

#### **Observations:**

- We will show than the yield of a tree is a string derived from the root of the tree;
- Of particular importance are the yields that consist of only terminals; that is, the leaves are either terminals or ε;
- When, in addition, the root is S then we have a parse tree for a string in the language of the grammar;
- We will see that yields can be used to describe the language of a grammar.

May 2nd 2016, Lecture 10

TMV027/DIT321

22/28

#### **Context-Free Grammars and Inductive Definitions**

Each CFG can be seen as an inductive definition (see slide 3).

**Example:** Consider the grammar for palindromes in slide 4 (and 6).

It can be seen as the following definition:

Base Cases: The empty string is a palindrome;0 and 1 are palindromes.

Inductive Steps: If w is a palindrome, then so are 0w0 and 1w1.

A natural way then to do proofs on context-free languages is to follow this inductive structure.

# Proofs About a Grammar

When we want to prove something about a grammar we usually need to prove an statement for each of the variables in the grammar.

(Compare this with proofs about FA where we needed statements for each state.)

Proofs about grammars are in general done by:

- (course-of-value) induction on the length of a certain string of the language;
- (course-of-value) induction on the length (number of steps) of a derivation of a certain string;
- induction on the structure of the strings in the language;
- (course-of-value) induction on the height of the parse tree.

May 2nd 2016, Lecture 10

TMV027/DIT321

# Example: Proof About a Grammar

**Exercise:** Consider the grammar  $S \to \epsilon \mid 0S1 \mid 1S0 \mid SS$ . Show that if  $S \Rightarrow^* w$  then  $\#_0(w) = \#_1(w)$ .

**Proof:** Our P(n): if  $S \Rightarrow^n w$  then  $\#_0(w) = \#_1(w)$ . Proof by course-of-value induction on the length of the derivation.

Base cases: If length is 1 then we have  $S \Rightarrow \epsilon$  and  $\#_0(\epsilon) = \#_1(\epsilon)$  holds.

Inductive Steps: Assume  $S \Rightarrow^i w_1$  and  $S \Rightarrow^j w_2$  in at most  $n \ge i, j > 0$  steps. By IH  $\#_0(w_1) = \#_1(w_1)$  and  $\#_0(w_2) = \#_1(w_2)$ .

Let  $S \Rightarrow^{n+1} w$  with n > 0. Then we have 3 cases:

- $S \Rightarrow 0S1 \Rightarrow^n 0w_11$ :  $S \Rightarrow^n w_1$  so by IH  $\#_0(w_1) = \#_1(w_1)$  hence  $\#_0(w) = \#_0(0w_11) = 1 + \#_0(w_1) = 1 + \#_1(w_1) = \#_1(w)$ ;
- $S \Rightarrow 1S0 \Rightarrow^n 1w_10$ : Similar ...
- $S \Rightarrow SS \Rightarrow^{n} w_{1}w_{2}$ :  $S \Rightarrow^{i} w_{1}$  and  $S \Rightarrow^{j} w_{2}$  with i, j < n so by IH  $\#_{0}(w_{1}) = \#_{1}(w_{1})$ and  $\#_{0}(w_{2}) = \#_{1}(w_{2})$ . Hence  $\#_{0}(w) = \#_{0}(w_{1}) + \#_{0}(w_{2}) = \#_{1}(w_{1}) + \#_{1}(w_{2}) = \#_{1}(w)$ .

#### Example: Proof About a Grammar

**Lemma:** Let G be the grammar presented on slide 4. Then  $\mathcal{L}(G)$  is the set of palindromes over  $\{0,1\}$ .

**Proof:** We will prove that if  $w \in \{0,1\}^*$ , then  $w \in \mathcal{L}(G)$  iff  $w = \operatorname{rev}(w)$ .

If) Our P(n): if w is a palindrome and |w| = n then  $w \in \mathcal{L}(G)$ , that is,  $P \Rightarrow^* w$ . Proof by course-of-value induction on n (that is, |w|).

Base cases: If |w| = 0 or |w| = 1 then w is  $\epsilon$ , 0 or 1. We have productions  $P \to \epsilon$ ,  $P \to 0$  and  $P \to 1$ . Then  $P \Rightarrow^* w$  so  $w \in \mathcal{L}(G)$ .

Inductive Steps: Assume w such that |w| > 1. Our IH is that the property for any w' such that |w'| < |w|. Since  $w = \operatorname{rev}(w)$  then w = 0w'0 or w = 1w'1, and  $w' = \operatorname{rev}(w')$ . |w'| < |w| so by IH then  $P \Rightarrow^* w'$ . If w = 0w'0 we have  $P \Rightarrow 0P0 \Rightarrow^* 0w'0 = w$  so  $w \in \mathcal{L}(G)$ . Similarly if w = 1w'1.

May 2nd 2016, Lecture 10

MV027/DIT32

26/28

#### Example: Proof About a Grammar (Cont.)

**Only-if**) We prove that if  $w \in \mathcal{L}(G)$  then w is a palindrome.

Our P(n): if  $P \Rightarrow^n w$  then w = rev(w).

Proof by mathematical induction on n (length of the derivation of w).

Base case: If the derivation is in one step then we should have  $P \Rightarrow \epsilon$ ,  $P \Rightarrow 0$  and  $P \Rightarrow 1$ . In all cases we have w = rev(w).

Inductive Step: Our IH is that if  $P \Rightarrow^n w'$  with n > 0 then w' = rev(w').

Assume  $P \Rightarrow^{n+1} w$ . The we have 2 cases:

- $P \Rightarrow 0P0 \Rightarrow^n 0w'0 = w;$
- $P \Rightarrow 1P1 \Rightarrow^n 1w'1 = w.$

Observe that in both cases  $P \Rightarrow^n w'$  with n > 0.

Hence by IH  $w' = \operatorname{rev}(w')$  so  $w = \operatorname{rev}(w)$ .

# **Overview of Next Lecture**

Sections 5.2.3-5.2.6, 5.4:

- Inference, derivations and parse trees;
- Ambiguity in grammars;
- Regular grammars.

May 2nd 2016, Lecture 10

FMV027/DIT32

28/28