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Overview of today’s lecture:

Inference, derivations and parse trees;

Ambiguity in grammars;

Regular grammars.

Recap: Context-Free Grammars

Defined the so-called context-free languages;

Developed in the mid-1950s by Noam Chomsky;

Defined as 4-tuples G = (V ,T ,R,S);

Notions:

Recursive inference;

Derivations: ⇒,
lm⇒,

rm⇒,⇒∗;

Sentential forms: S ⇒∗ α, S
lm
⇒∗ α, S

rm
⇒∗ α;

Parse trees, their heights and yields;

L(G ) = {w ∈ T ∗ | S
G
⇒∗ w};

Proofs about grammars.
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Inference, Derivations and Parse Trees

Given a CFG G = (V ,T ,R,S), the following statements are equivalents:

1 The recursive inference procedure determines that string w is in the
language of the variable A;

2 A ⇒∗ w ;

3 A
lm
⇒∗ w ;

4 A
rm
⇒∗ w ;

5 There is a parse tree with root A and yield w .

Note: The equivalences of 2–5 are also valid when the string w contains variables.
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Inference, Derivations and Parse Trees (Cont.)

Showing 3 ⇒ 2 and 4 ⇒ 2 is trivial.

The next 7 slides contain the main ideas in the proofs of 1 ⇒ 5, 5 ⇒ 3,
5 ⇒ 4 and 2 ⇒ 1.

We will intuitively follow the proofs using the following grammar

E → 0 | 1 | E + E | if B then E else E
B → True | False | E < E | E == E

and the string “if 0 < 1 then 1 + 1 else 0”.
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From Recursive Inference to Parse Trees (1 ⇒ 5)

Theorem: Let G = (V ,T ,R,S) be a CFG and A ∈ V .
If the recursive inference tells us that w is in the language of A then there
is a parse tree with root A and yield w.

Proof: By course-of-value induction on the number of steps in the recursive inference.

P(n) : if w is obtained from A by a recursive inference with n steps, then there is a

parse tree with root A and yield w .

Base case: 1 step: Then we have a production A → w and it is trivial to build the tree.

Inductive Step: n + 1 steps: Our IH is that the statement is true for strings x and

variables B such that x is in the language of B can be recursively inferred in at most n

steps.
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From Recursive Inference to Parse Trees (1 ⇒ 5) (Cont.)

Suppose the last step in the inference of w uses the production A → X1X2 . . .Xk .

We break w up as w1w2 . . .wk where:

1 If Xi is a terminal then wi = Xi ;

2 If Xi is a variable then wi is the string which was inferred to be in the language of
Xi .
This inference took at most n steps and we can apply IH.

Then we have a tree with root Xi and yield wi .

We can now construct a tree with root A, first line of children X1,X2, . . . ,Xk , and then

the trees given by the IH when Xi is a variable or the corresponding terminal when Xi is

a terminal.

The yield of the tree is the concatenation of the yields of the children of A which is

w1w2 . . .wk = w .
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From Trees to Leftmost Derivations (5 ⇒ 3)

Theorem: Let G = (V ,T ,R,S) be a CFG.

If there is a parse tree with root A and yield w then A
lm
⇒∗ w in G.

Proof: By course-of-value induction in the height of the tree.

P(n) : If there is a parse tree of height n with root A and yield w then A
lm

⇒∗ w in G .

Base case: Height 1: Must be a production A → w and then A
lm⇒ w and A

lm

⇒∗ w .

Inductive Step: Height n > 1: Let X1,X2, . . . ,Xk be the children of the root A. Note

that there must be a production A → X1X2 . . .Xk . Now:

1 If Xi is a terminal, define wi = Xi ;

2 If Xi is a variable, then it is the root of a subtree. Let wi be the yield of Xi . This

subtree has height less than n and then by IH Xi

lm

⇒∗ wi .

Observe that w = w1w2 . . .wk .

To construct a leftmost derivation for w we start at A
lm⇒ X1X2 . . .Xk .
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From Trees to Leftmost Derivations (5 ⇒ 3) (Cont.)

By induction on i we show that A
lm

⇒∗ w1w2 . . .wi−1XiXi+1 . . .Xk .

Base case: For i = 0 we already have A
lm⇒ X1X2 . . .Xk .

Inductive Step: Assume A
lm

⇒∗ w1w2 . . .wi−1XiXi+1 . . .Xk .

1 If Xi is a terminal we do nothing.

So A
lm

⇒∗ w1w2 . . .wi−1wiXi+1 . . .Xk ;

2 If Xi is a variable, by IH we have that Xi
lm⇒ α1

lm⇒ α2 . . .
lm⇒ wi .

Apply this sequence of derivations to go from A
lm

⇒∗ w1w2 . . .wi−1XiXi+1 . . .Xk to

A
lm

⇒∗ w1w2 . . .wi−1wiXi+1 . . .Xk .

Observe that each step is a leftmost derivation!

When i = k then we have constructed a leftmost derivation

A
lm

⇒∗ w1w2 . . .wi−1wiwi+1 . . .wk .
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From Trees to Rightmost Derivations (5 ⇒ 4)

Theorem: Let G = (V ,T ,R,S) be a CFG.

If there is a parse tree with root A and yield w then A
rm
⇒∗ w in G.

Proof: The proof is similar to that of the previous theorem.

The difference is that we first need to expand Xk then Xk−1 and so on until we get to X1.
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From Derivations to Recursive Inference (2 ⇒ 1)

Theorem: Let G = (V ,T ,R,S) be a CFG.
If A ⇒∗ w then the recursive inference procedure applied to G determines
that w is in the language of A.

Proof: By course-of-value induction on the length of the derivation of A ⇒∗ w .

P(n) : if A ⇒n w then the recursive inference procedure applied to G determines that w

is in the language of A.

Base case: 1 step: Then A → w is a production and the base part of the recursive

inference will find that w is in the language of A.

Inductive Step: n + 1 steps: Our IH is that the statement holds for any derivation of at

most n steps.

May 9th 2016, Lecture 11 TMV027/DIT321 9/29



From Derivations to Recursive Inference (2 ⇒ 1) (Cont.)

Let A ⇒ X1X2 . . .Xk ⇒∗ w be the first step.

Now, we can break w as w = w1w2 . . .wk where:

1 If Xi is a terminal then Xi = wi ;

2 If Xi is a variable then Xi ⇒∗ wi .

This derivation takes at most n steps and then by IH wi is inferred to be in the

language of Xi .

If A ⇒ X1X2 . . .Xk ⇒∗ w then there must be a production A → X1X2 . . .Xk and we

know that each wi is either Xi or belongs to the language of Xi .

The last step of the recursive inference procedure must use these facts to obtain that

w1w2 . . .wk is in the language of A.
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Ambiguity in Natural (English) Language

Dictionary definition:

Ambiguity: a word or expression that can be understood

in two or more possible ways.

What do I mean when I say . . .

Kids make nutritious snacks;

The lady hit the man with an umbrella;

He gave her cat food;

The man saw the boy with the binoculars;

They are hunting dogs.

May 9th 2016, Lecture 11 TMV027/DIT321 11/29



Example: Ambiguous Grammar

The following (simplified part of a) grammar produces ambiguity in programming
languages with conditionals:

C → if b then C else C
C → if b then C
C → s

The expression “if b then if b then s else s” can be interpreted in 2 ways:

1 if b then (if b then s else s)

2 if b then (if b then s) else s

How should the parser of this language understand the expression?
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Example: Ambiguous Grammars

Consider the following grammar

E → 0 | 1 | E + E | E ∗ E

The sentential form E + E ∗ E has the following 2 possible derivations

1 E ⇒ E + E ⇒ E + E ∗ E
2 E ⇒ E ∗ E ⇒ E + E ∗ E

Observe the difference of the corresponding parse tree for each derivation.

Intuitively, there are 2 possible meanings for words like 1 + 1 * 0:

1 1 + (1 * 0) = 1

2 (1 + 1) * 0 = 0
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Ambiguous Grammars

Definition: A CFG grammar G = (V ,T ,R,S) is ambiguous if there is at
least a string w ∈ T ∗ for which we can find two (or more) parse trees,
each with root S and yield w .

If each string has at most one parse tree we say that the grammar is
unambiguous.

Note: The existence of different derivations for a certain string does not necessarily
mean the existence of different parse trees!

1 E ⇒ E + E ⇒ 1 + E ⇒ 1 + 0

2 E ⇒ E + E ⇒ E + 0 ⇒ 1 + 0
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Removing Ambiguity from Grammars

Unfortunately, there is no algorithm that can tell us if a grammar is
ambiguous.

In addition, there is no algorithm that can remove ambiguity in a grammar.

Some context-free languages have only ambiguous grammars.
These languages are called inherently ambiguous.

In these cases removal of ambiguity is impossible.

For the other cases, there are well-known techniques for eliminating
ambiguity.
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Problems with the Grammar of Expressions

There are 2 causes of ambiguity in the following grammar

E → 0 | 1 | E + E | E ∗ E

1 The precedence of the operators is not reflected in the grammar:
∗ has stronger precedence than +;

2 How to associate an operator is not reflected in the grammar:
We will have 2 parse trees for E + E + E .

Even if the operator is associative in the language we define, we need to pick one

way of grouping the operator.
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Solution for the Grammar of Expressions

To enforce precedence we introduce different variables representing those
expressions with the same binding strength. Namely:

A factor is an expression that cannot be broken apart by any adjacent
operators: either 0 or 1, or a parenthesised expression;

A term is an expression that cannot be broken by the + operator,
that is, a sequence of one or more factors connected by ∗;

An expression is a sequence of one or more terms connected by +.

In this way, terms and expressions will associate to the left.
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Unambiguous Grammar for Expressions

We have then the following unambiguous grammar:

F → 0 | 1 | (E )
T → F | T ∗ F
E → T | E + T

Note: It is not obvious that this is an unambiguous grammar!

Example: We have E ⇒∗ 1 + 1 ∗ 0 with the usual meaning
or E ⇒∗ (1 + 1) ∗ 0 if we want to change the precedence of the operators.

Even E ⇒∗ 1 + 0 + 1 has now only one derivation.
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Leftmost/Rightmost Derivations and Ambiguity

We have seen that derivations might not be unique even if the grammar is
unambiguous.

However, in an unambiguous grammars both the leftmost and the
rightmost derivations will be unique.

Example: The grammar of slide 16 must be ambiguous since we have 2 leftmost
derivations for 1 + 0 ∗ 1:

1 E
lm⇒ E + E

lm⇒ 1 + E
lm⇒ 1 + E ∗ E lm⇒ 1 + 0 ∗ E lm⇒ 1 + 0 ∗ 1

2 E
lm⇒ E ∗ E lm⇒ E + E ∗ E lm⇒ 1 + E ∗ E lm⇒ 1 + 0 ∗ E lm⇒ 1 + 0 ∗ 1

Note: In general we have

Number of leftmost derivations = number of rightmost
derivations = number of parse trees.

May 9th 2016, Lecture 11 TMV027/DIT321 19/29



Leftmost/Rightmost Derivations and Ambiguity

Theorem: Let G = (V ,T ,R,S) be a CFG and let w ∈ T ∗.
w has 2 distinct parse trees iff w has 2 distinct leftmost (rightmost)
derivations from S.

Proof: We sketch the proof dealing with leftmost derivations.

If) Start the tree with S . Examine each step in the derivation. Only the leftmost

variable will be replaced. This variable corresponds to the leftmost node in the tree

being constructed. The production used determines the children of this subtree. 2

different derivations will produce a subtree with different children.

Only-if) In slides 6–7 we constructed a leftmost derivation from a parse tree. Observe

that if the trees have a node where different productions are used then so will the

leftmost derivations.
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Example: Balanced Parentheses

The following grammar of parenthesis expressions is ambiguous

E → ǫ | EE | (E )

since E
lm⇒ ǫ and E

lm⇒ EE
lm⇒ ǫE

lm⇒ ǫǫ = ǫ.

Let us consider the following grammar instead:

S → ǫ | (S)S

We want to prove that:

Lemma: L(S) = L(E ).

Theorem: The grammar for S is not ambiguous.
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Example: Balanced Parentheses (Cont.)

Lemma: L(S)L(S) ⊆ L(S).

Proof: By course-of-value induction on |w |.
P(n) : for w ∈ L(S) with |w | = n then wL(S) ⊆ L(S).

Base case: If |w | = 0 then w = ǫ and ǫL(S) = L(S).

Inductive step: If |w | = n + 1 then w = (u)v with u, v ∈ L(S) and |u|, |v | 6 n.
Hence the IH holds for u and v .

Then, by IH we have that vL(S) ⊆ L(S).

Since S → (S)S is a production then (L(S))L(S) ⊆ L(S).

u ∈ L(S), then
wL(S) = (u)vL(S) ⊆ (u)L(S) ⊆ L(S).
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Example: Balanced Parentheses (Cont.)

Lemma: L(S) = L(E ).

Proof: (Sketch) Let w ∈ L(S) and x ∈ L(E).

L(S) ⊆ L(E): By course-of-value induction on |w |.
P(n) : for w ∈ L(S) with |w | = n then w ∈ L(E).

Base case is trivial.

Let |w | = n + 1. We have that w = (u)v with u, v ∈ L(S) and |u|, |v | 6 n.

By IH u, v ∈ L(E). Using the productions of E we conclude that w ∈ L(E).

L(E) ⊆ L(S): By course-of-value induction on the length of E ⇒∗ x .
P(n) : if E ⇒n x then x ∈ L(S).

If E ⇒ x then x = ǫ and x ∈ L(S).
If E ⇒ EE ⇒∗ uv = x then by IH u, v ∈ L(S) and by previous lemma then
x = uv ∈ L(S)L(S) ⊆ L(S).
If E ⇒ (E) ⇒∗ (u) = x then by IH u ∈ L(S) and x = (u)ǫ ∈ L(S).
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Example: Balanced Parentheses (Cont.)

Theorem: The grammar for S is not ambiguous.

Proof: Not trivial!! Let w ∈ {(, )}∗.
One tries to show that there is at most one leftmost derivation S

lm

⇒∗ w .
If w = ǫ then it is trivial.
Otherwise, either w =)v and there is no derivation or

w = (v and we have that S
lm⇒ (S)S .

We now should prove (by induction on |u|) that

Lemma: Given u, for any k, there is at most one leftmost derivation

S〈)S〉k
lm

⇒∗ u.

We use this lemma with v and k = 1 to conclude that there is at most one leftmost

derivation S)S
lm

⇒∗ v .

Then, there is at most one leftmost derivation S
lm⇒ (S)S

lm

⇒∗ (v = w .
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Inherent Ambiguity

Definition: A context-free language L is said to be inherently ambiguous
if all its grammars are ambiguous.

Note: It is enough that 1 grammar for the L is unambiguous for L to be unambiguous.

Example: The following language is inherently ambiguous:

L = {anbncmdm | n,m > 1} ∪ {anbmcmdn | n,m > 1}

(See grammar for L in Lecture 10, slide 18.)

Strings of the form anbncndn for n > 0 have 2 different leftmost derivations.

See pages 214–215 in the book for the intuition of why L is inherent ambiguous.

The proof is complex!
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Regular Grammars

Definition: A grammar where all rules are of the form A → aB or A → ǫ
is called left regular.

Definition: A grammar where all rules are of the form A → Ba or A → ǫ
is called right regular.

Note: We will see that regular grammars generate the regular languages.
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Example: Regular Grammars

A DFA that generates the language over {0, 1} with an even number of 0’s:

q0 q1

0

0

1

1

Exercise: What could the left regular grammar be for this language?

Let q0 be the start variable.

q0 → ǫ | 0q1 | 1q0
q1 → 0q0 | 1q1
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Example: Regular Grammars

Consider the following
DFA over {0, 1}:

q0 q1 q2
0

1

0

1 0 1

Exercise: What could the left regular grammar be for this language?

Let q0 be the start variable.

q0 → 0q1 | 1q0 q1 → 0q1 | 1q2 q2 → ǫ | 0q1 | 1q2
q0 ⇒ 1q0 ⇒ 10q1 ⇒ 100q1 ⇒ 1001q2 ⇒ 10010q1 ⇒ 100101q2 ⇒ 100101

Exercise: What could the right regular grammar be for this language?
Let q2 be the start variable.

q0 → ǫ | q01 q1 → q00 | q10 | q20 q2 → q11 | q21
q2 ⇒ q11 ⇒ q201 ⇒ q1101 ⇒ q10101 ⇒ q000101 ⇒ q0100101 ⇒ 100101
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Overview of Next Lecture

Sections 7–7.2:

Regular grammars and Chomsky hierarchy;

Simplifications and normal forms for CFL;

Pumping lemma for CFL.
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