
Testing, Debugging, and Verification exam

DIT082/TDA567

Day: 9 January 2016 Time: 1400 − 1800

Responsible: Atze van der Ploeg

Results: Will be published mid February or earlier

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 18p, 3: 19 – 24 p, 4: 25 – 29p, 5: 30 –37p,
G: 19 – 29p, VG: 30 – 37p, Max. 37p.

Please observe the following:
• This exam has 14 numbered pages.

Please check immediately that your copy is complete
• Answers must be given in English
• Please use page numbering on your pages
• Please write clearly
• Fewer points are given for unnecessarily complicated solutions
• Indicate clearly when you make assumptions that are not given in the assignment
• Answers to the exam will be published on the course website tomorrow.

Good luck!

1

Exam/Tenta DIT082/TDA567 9 Jan 2017 3

1 Testing

Assignment 1 Certainty and Testing (2p)

In most cases, unit testing can give some assurances, but not guarantees for all inputs.

→ Explain why in most cases unit testing cannot give such hard guarantees.

Solution
Methods typically have an (practically) infinite number of inputs. It is hence impossible
to have a unit test for each possible input.

Assignment 2 Coverage (4p)

Consider the following piece of Java code:

class Group{

private final String[] names;

Group(String[] names){

this.names = names;

}

// requires: All elements of names are non-null

// ensures: returns true if and only if

// there is an element in

// names that equals name

boolean isPartOfGroup(String name){

if(name == null) { return false; }

for(int i = 0; i < names.length ; i ++){

if(name.equals(names[i])){

return true;

}

}

return false;

}

→ Construct a Java class where the methods are tests of the isPartOfGroup
method above, such that the test-cases together provide statement cov-
erage.

Solution

Exam/Tenta DIT082/TDA567 9 Jan 2017 4

class Test{

static Group g = new Group(

new String[]{"simon", "mauricio", "atze"});

@Test void test1() {

assertEquals(g.isPartOfGroup(null), false);

}

@Test void test2() {

assertEquals(g.isPartOfGroup("mauricio"), true);

}

@Test void test3() {

assertEquals(g.isPartOfGroup("Gustav"), false);

}

}

Exam/Tenta DIT082/TDA567 9 Jan 2017 5

Assignment 3 Mutation testing (4p)

Consider the following Java method:

/*

requires: input left and right are non-null arrays which are sorted

in non-decreasing order

ensures: output is a non-null array, sorted in non-decreasing order,

such that for any integer i, the number of occurrences in the output

of i, is equal to the number of occurrences in the left arrays of i

plus the number of occurrences in the right array of i. */

public static int[] merge(int[] left, int[] right){

int [] res = new int[left.length + right.length];

int il = 0, ir = 0, i = 0;

while(il < left.length && ir < right.length){

if(left[il] <= right[ir]){

res[i] = left[il];

il += 1; i += 1;

} else {

res[i] = right[ir];

ir += 1; i += 1;

}

}

while (il < left.length) {

res[i] = left[il];

il += 1; i += 1;

}

while (ir < right.length) {

res[i] = right[ir];

ir += 1; i += 1;

}

return res;

}

Ludvig has constructed a set of tests for this method which consists of the following
tests (in shorthand):

merge({},{}) == {}

merge({2,2,3},{1,1,1}) == {1,1,1,2,2,3}

merge({0,1,3,5},{2,4}) == {0,1,2,3,4,5}

Ludvig thinks that he does not need more tests: he cannot imagine a bug that he has
not tested for. You, as a fresh expert on testing, do not agree with Ludvig.

Exam/Tenta DIT082/TDA567 9 Jan 2017 6

→ Show that Ludvig is wrong: construct a mutant of the method that does
not conform to the specification, but that is not killed by Ludvig’s test
set.

Solution
For example:

public static int[] merge(int[] left, int[] right){

int [] res = new int[left.length + right.length];

int il = 0, ir = 0, i = 0;

while(il < left.length && ir < right.length){

if(left[il] <= right[ir]){

res[i] = left[il];

il += 1; i += 1;

} else {

res[i] = right[ir];

ir += 1; i += 1;

}

}

while (il < left.length) {

res[i] = left[il];

il += 1; i += 1;

}

while (false) { // <- mutate here

res[i] = right[ir];

ir += 1; i += 1;

}

return res;

}

This code is wrong, but none of the tests from Ludvig’s tests fail (kill the mutant).

Exam/Tenta DIT082/TDA567 9 Jan 2017 7

Assignment 4 Test driven development (2p)

The test driven development methodology is often summarized as red-green-refactor.

→ Explain what red-green-refactor means.

Solution
The process is as follows:

1. Write tests, make sure they fail (red).

2. Implement method, make sure the tests succeed(green).

3. Clean up code (refactor).

Assignment 5 Minimization (5p)

Suppose we have method f which takes an array of characters as input and suppose
that this method computes the output incorrectly if the input contains an even number
of ’X’ characters (but not zero), and otherwise computes the result correctly.

The shortest example of a string which contains an even number of ’X’ characters
is the string "XX". However, Sven has used a correct implementation of the ddMin

algorithm to minimize a failing example of the method f, and the result was not "XX"
but "XXXX".

(a) Explain why this is possible. (2p)

Solution
The ddMin algorithm computes a 1-minimal failing input, which means an input where
if you remove any single character, the resulting input succeeds. To go from "XXXX" to
"X" you need to remove two characters at the same time. So ddMin does not guarantee
that it will reduce "XXXX" to "XX".

(b) Simulate a run of the ddMin algorithm and compute a 1-minimal fail-
ing input from the following initial failing input: [x,a,x,x,c,x,x,x].
Clearly state what happens at each step of the algorithm and what the
final result is.

(3p)

Solution

Start with granularity n = 2 and sequence [x,a,x,x,c,x,x,x].

Exam/Tenta DIT082/TDA567 9 Jan 2017 8

The number of chunks is 2
==> n : 2, [x, a, x, x] PASS (take away first chunk)
==> n : 2, [c, x, x, x] PASS (take away second chunk)

Increase number of chunks to min(n ∗ 2, len([x, a, x, x, c, x, x, x])) = 4
==> n : 4, [x, x, c, x, x, x] PASS (take away first chunk)
==> n : 4, [x, a, c, x, x, x] FAIL (take away second chunk)

Adjust number of chunks to max(n− 1, 2) = 3
==> n : 3, [c, x, x, x] PASS (take away first chunk)
==> n : 3, [x, a, x, x] PASS (take away second chunk)
==> n : 3, [x, a, c, x] FAIL (take away third chunk)

Adjust number of chunks to max(n− 1, 2) = 2
==> n : 2, [x, a] PASS (take away first chunk)
==> n : 2, [c, x] PASS (take away first chunk)

Increase number of chunks to min(n ∗ 2, len([l, f, o, o]) = 4
==> n : 4, [a, c, x] PASS (take away first chunk)
==> n : 4, [x, c, x] Fail (take away second chunk)

Adjust number of chunks to max(n− 1, 2) = 3
==> n : 4, [c, x] PASS (take away first chunk)
==> n : 3, [x, x] Fail (take away second chunk)

Adjust number of chunks to max(n− 1, 2) = 2
==> n : 4, [x] PASS (take away first chunk)
==> n : 3, [x] PASS (take away second chunk)

As n == len([x, x]) the algorithm terminates with 1-minimal failing input [x, x]

Exam/Tenta DIT082/TDA567 9 Jan 2017 9

Assignment 6 Formal Specification (1) (3p)

CompCert is a verified compiler from C to assembly.

→ Briefly explain what we mean when we say that CompCert is a verified
compiler from C to assembly. Use at least the following words in your
answer: specification, behavior, proof.

Solution
CompCert has three ingredients:

• A formal specification of the C language, which states which input/output behav-
iors can be exhibited by a a program in C.

• A formal specification of the assembly language, which states which input/output
behaviors can be exhibited by a a program in assembly.

• An executable mathematical function which translates a program in C to a pro-
gram in assembly.

When we say that CompCert is verified, we mean that there is a proof that if a com-
piled version of a program (in assembly) can exhibit some behavior according to the
specification of the assembly language, then this behavior can also be exhibited by the
uncompiled version (in C) according to the specification of the C language. (Less ac-
curate, but also OK is if a student says that there is a proof that that all input-output
behaviors that can be exhibited by the source program can also exhibited by the target
program)

Assignment 7 Formal Specification (2) (7p)

In this question you are going to specify and implement a method that gives a reversed
copy of an array in Dafny. For example, the result of running the method on an array
containing [1,2,3,4] will be a new array containing [4,3,2,1]. The header of the
method is as follows:

method reverse(a : array<int>) returns (res : array<int>)

requires a != null

ensures ?

(a) Complete the specification of reverse by filling in the ensures field. (3p)

Solution

Exam/Tenta DIT082/TDA567 9 Jan 2017 10

res != null && res.Length == a.Length && forall i : int :: 0 <= i < a.

Length ==> res[i] == a[a.Length - 1 - i]

(b) Implement the reverse method. Use a while loop and provide a loop
invariant and decrease clauses such that Dafny will be able to prove total
correctness. (It is not allowed to use a parallel for loop.)

(4p)

Solution

var i := 0;

res := new int[a.Length];

while i < a.Length

invariant 0 <= i <= a.Length

invariant forall j : int :: 0 <= j < i ==> res[j] == a[a.Length - 1 -

j]

{

res[i] := a[a.Length - 1 - i];

i := i + 1;

}

Exam/Tenta DIT082/TDA567 9 Jan 2017 11

Assignment 8 (Formal Verification) (10p)

A remarkable fact of numbers is that the sum of the natural numbers 0 till n is n(n+1)
2

.

In other words (assuming n ≥ 2):

0 + 1 + 2 + .. + n =
n(n + 1)

2

For example, 0 + 1 + 2 + 3 + 4 + 5 = 5(5+1)
2

= 15

In this question, you are going to prove that 0 + .. + n = n(n+1)
2

is true using the
weakest-precondition calculus.

The expression n(n+1)
2

is implemented by sumn:

function sumn(n : int) : int { n * (n + 1) / 2}

The following method implements 0 + 1 + 2 + .. + n:

method sum(n : nat) returns (s : nat)

ensures s == sumn(n)

{

i := 0;

s := 0;

while i < n

invariant i <= n && s == sumn(i)

decreases n - i

{

i := i + 1;

s := s + i;

}

}

→ Prove total correctness (including termination) for the above program.

You can assume:

• sumn(0) = 0

• s == sum(i) ==> s + (i + 1) == sum(i+1)

(or sumn(i) + (i + 1) = sumn(i + 1))
(below I explain why this is true in case you are interested, but this
is not needed to make the exam.)

Recall that a method without an requires clause is the same as a method
with the clause requires true .

Exam/Tenta DIT082/TDA567 9 Jan 2017 12

Solution

Compute weakest postcondition :

wp(i := 0; s := 0 ; while ..., s == sumn(n))

Apply seq rule (x2)

wp(i := 0, wp(s := 0 , wp(while ..., s == sumn(n))))

Compute wp(while ..., s == sumn(n)) first

wp(while (i < n) (i <= n && s == sum(i)) (n-i) i := i + 1; s := s+i, s ==

sum(n))

Which expands to (these should all hold):

1. Invariant holds before loop: i <= n && s == sum(i)

2. Invariant maintained in loop: i < n && i <= n && s == sum(i) ==>

wp(i := i + 1; s := s+i, i <= n && s == sum(i)

3. Invariant and loop fail implies postcondition:
!(i < n) && i <= n && s == sum(i) ==> s == sumn(n)

4. Decreases clause always positive : i <= n && s == sum(i) ==> n - i >= 0

5. Iteration decreases : i < n && i <= n && s == sum(i) ==>

wp(tmp := n-i; i := i + 1; s := s+i, tmp > n - i)

Simplify (2):

i < n && i <= n && s == sum(i) ==>

wp(i := i + 1; s := s+i, i <= n && s == sum(i)

Compute wp(i := i + 1; s := s+i, i <= n && s == sum(i))

Apply seq rule:
wp(i := i + 1, wp(s := s + i, i <= n && s == sum(i))

Apply assignment rule (x2)
i <= n && s+(i + 1) == sum(i+1)

Plug in to (2):
i < n && i <= n && s == sum(i) ==>

i <= n && s+(i + 1) == sum(i+1)

Simplify using i <= n is both before and after ==> and remove i < n

s == sum(i) ==> s+(i + 1) == sum(i+1)

This is an assumption we had, so reduces to true.

Exam/Tenta DIT082/TDA567 9 Jan 2017 13

Simplify (3) :

!(i < n) && i <= n && s == sum(i) ==> s == sumn(n)

Use !(i < n) = i >= n

i >= n && i <= n && s == sum(i) ==> s == sumn(n)

Use i >= n \&\& i <= n <==> i == n

i == n && s == sum(i) ==> s == sumn(n)

Use i == n in right hand side and remove i == n

s == sum(i) ==> s == sumn(i)

Simplify using a ==> a == True

True

Simplify (4)

i <= n && s == sum(i) ==> n - i >= 0

Remove irrelevant: i <= n ==> n - i >= 0

Rewrite n - i >= 0 i <= n ==> n >= i

Flip
i <= n ==> i <= n

Simplify using a ==> a == True

True

Simplify (5)

i < n && i <= n && s == sum(i) ==>

wp(tmp := n-i; i := i + 1; s := s+i, tmp > n - i)

Compute:

wp(tmp := n-i; i := i + 1; s := s+i, tmp > n - i)

Seq rule (x2)

wp(tmp := n-i, wp(i := i + 1, wp(s := s+i, tmp > n - i)))

Assignment rule (x 3)
n - i > n - (i + 1)

Simplify

n - i > n - i - 1

True by a > a - 1 True

Now 2,3,4,5 reduce to true. So the

Exam/Tenta DIT082/TDA567 9 Jan 2017 14

wp(while ..., s == sumn(n))

= i <= n && s == sum(i)

Plug back into: wp(i := 0, wp(s := 0 , wp(while ..., s == sumn(n)))) be-
comes:

wp(i := 0, wp(s := 0 , i <= n && s == sum(i))) Assignment (x2) 0 == sum(0)

Use assumption 0 == 0 True

So weakest precondition of program is true. Now check that our precondition (true)
implies that: True ==> True Which is True

This is the end of the exam, you do not need to read further to make the exam!

Below I explain why the assumptions above are true in case you are interested:

The assumption s == sum(i) ==> s + (i + 1) == sum(i+1)

follows from sumn(i) + (i + 1) = sumn(i + 1)
But why does this hold? Here is a proof:

sumn(n) + (n + 1) =
n(n + 1)

2
+ (n + 1) =

n(n + 1) + 2(n + 1)

2

(n + 2)(n + 1)

2
= sumn(n + 1)

(total 37p)

