Higher-Order Functions

The Heart and Soul of Functional Programming

Based on original slides by John Hughes and Koen Claessen

What is a "Higher Order" Function?

A function which takes another function as a parameter.

$$
\begin{aligned}
& \text { even :: Int -> Bool } \\
& \text { even } n=\text { n`mod` } 2==0
\end{aligned}
$$

Examples

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]
filter even [1, 2, 3, 4, 5] = [2, 4]

What is the Type of filter?

filter even [1, 2, 3, 4, 5] = [2, 4]
even :: Int -> Bool
filter :: (Int -> Bool) -> [Int] -> [Int]
A function type can be the type of an argument.
filter :: (a -> Bool) -> [a] -> [a]

Quiz: What is the Type of map?

Example map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

map also has a polymorphic type -- can you write it down?

Quiz: What is the Type of map?

Example

 map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

Quiz: What is the Definition of map?

Example

 map even [1, 2, 3, 4, 5] = [False, True, False, True, False]map :: (a -> b) -> [a] -> [b]
map = ?

Quiz: What is the Definition of map?

Example

 map even [1, 2, 3, 4, 5] = [False, True, False, True, False]map :: (a -> b) -> [a] -> [b]
$\operatorname{map} f[] \quad=[]$
$\operatorname{map} f(x: x s)=f x: \operatorname{map} f x s$

Is this "Just Another Feature"?

-Higher-order functions are the "heart and soul" of functional programming!
-A higher-order function can do much more than a "first order" one, because a part of its behaviour can be controlled by the caller.
-We can replace many similar functions by one higherorder function, parameterised on the differences.

Case Study: Summing a List

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

General Idea
Combine the elements of a list using an operator.

Specific to Summing
The operator is + , the base case returns 0 .

Case Study: Summing a List

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

Replace 0 and + by parameters -- + by a function.

```
foldr op z [] = z
foldr op z (x:xs) = x `op` foldr op z xs
```


Case Study: Summing a List

New Definition of sum

$$
\text { sum xs = foldr plus } 0 \text { xs }
$$

where plus $x y=x+y$
or just...

$$
\text { sum xs = foldr (+) } 0 \text { xs }
$$

Just as `fun` lets a function be used as an operator, so (op) lets an operator be used as a function.

Applications

Combining the elements of a list is a common operation.
Now, instead of writing a recursive function, we can just use foldr!

```
product xs = foldr (*) 1 xs
and xs = foldr (&&) True xs
concat xs = foldr (++) [] xs
maximum (x:xs) = foldr max x xs
```

$$
\begin{aligned}
& \text { An Intuition About foldr }
\end{aligned}
$$

The operator ":" is replaced by Ψ and [] is replaced by z.

An Intuition About foldr

```
foldr op z [] = z
foldr op z (x:xs) = x `op` foldr op z xs
```


Example

foldr op z (a:(b:(c:[]))) = a `op` foldr op z (b:(c:[]))

$$
\begin{aligned}
& =a \text { `op` (b `op` foldr op z (c:[])) } \\
& \text { = a `op` (b `op` (c `op` foldr op z [])) } \\
& \text { = a `op` (b `op` (c `op` z)) }
\end{aligned}
$$

The operator ":" is replaced by `op`, [] is replaced by z.

Quiz

What is

foldr (:) [] xs

Quiz

What is

foldr (:) [] xs

Replaces ":" by ":", and [] by [] -- no change!
The result is equal to $x s$.

Quiz

What is
foldr (:) ys xs

Quiz

What is

foldr (:) ys xs

foldr (:) ys (a:(b:(c:[])))
= a:(b:(c:ys))

The result is $x s++y s$!

```
xs++ys = foldr (:) ys xs
```


Quiz

What is
foldr (:) ys xs

Quiz

What is
foldr snoc [] xs
where snoc y ys = ys++[y]
foldr snoc [] (a:(b:(c:[])))

$$
\begin{aligned}
& =a \text { `snoc` (b `snoc` (c `snoc` [])) } \\
& =(([]++[c])++[b]++[a]
\end{aligned}
$$

The result is reverse $x s$!

λ-expressions

```
reverse xs = foldr snoc [] xs
    where snoc y ys = ys++[y]
```

It's a nuisance to need to define snoc, which we only use once! A λ-expression lets us define it where it is used.

```
reverse xs = foldr (\lambday ys -> ys++[y]) [] xs
```

On the keyboard: reverse xs = foldr (\y ys -> ys++[y]) [] xs

Defining unlines

unlines ["abc", "def", "ghi"] = "abclndeflnghiln"
unlines [xs,ys,zs] = xs ++ " $\ln "++(y s++$ " n " ++ (zs ++ " $\ln "++[])$)

$$
\text { unlines xss = foldr (} \lambda x s \text { ys }->\text { xs++"\n"++ys) [] xss }
$$

Just the same as

unlines xss = foldr join [] xss
where join xs ys = xs ++ " n " ++ ys

Further Standard Higher-Order Functions

Another Useful Pattern

Example: takeLine "abc\ndef" = "abc" used to define lines.

```
takeLine [] = []
takeLine (x:xs)
    x/='\n' = x:takeLine xs
    otherwise = []
```

General Idea
Take elements from a list while a condition is satisfied.
Specific to takeLine
The condition is that the element is not ' n '.

Generalising takeLine

$$
\begin{array}{ll}
\text { takeLine }[] & =[] \\
\text { takeLine }(x: x s) & \\
\qquad \begin{array}{ll}
\mid x /=n^{\prime} & =x: \text { takeLine xs } \\
\mid \text { otherwise } & =[]
\end{array}
\end{array}
$$

takeWhile p [] = []
takeWhile p (x:xs)

$$
\mathrm{p} x \quad=\mathrm{x}: \text { takeWhile } \mathrm{p} \times \mathrm{s}
$$

otherwise = []

New Definition

takeLine $x s=$ takeWhile $\left(\lambda x->x /=\prime n^{\prime}\right) x s$
or takeLine $x s=$ takeWhile $\left(/=’ n^{\prime}\right) x s$

Notation: Sections

As a shorthand, an operator with one argument stands for a function of the other...

- map (+1) $[1,2,3]=[2,3,4]$
- filter (<0) $[1,-2,3]=[-2]$
- takeWhile (0<) [1,-2,3] = [1]

$$
\begin{aligned}
& (a \mathfrak{a}) b=a \mathfrak{b} \\
& (a \mathrm{a}) \mathrm{b}=\mathrm{b} a
\end{aligned}
$$

Note that expressions like (*2+1) are not allowed.
Write λx-> $x^{*} 2+1$ instead.

Defining lines

We use

- takeWhile p xs -- returns the longest prefix of xs
-- whose elements satisfy p.
- dropWhile p xs -- returns the rest of the list.

```
lines [] = []
lines xs = takeWhile (/='\n') xs :
        lines (tail (dropWhile (/='\n') xs))
```

General idea Break a list into segments whose elements share some property.

Specific to lines The property is: "are not newlines".

Quiz: Properties of takeWhile and dropWhile

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
Can you think of a property that connects takeWhile and dropWhile?

Hint: Think of a property that connects take and drop

Use import
Text.Show.Functions
prop_TakeWhile_DropWhile p xs = takeWhile p xs ++ dropWhile p xs == (xs :: [Int])

Generalising lines

segments $p[]=[]$
segments p xs $=$ takeWhile p xs :
segments p (drop 1 (dropWhile $p x s)$)

Example

segments $(>=0)[1,2,3,-1,4,-2,-3,5]$

$$
=\quad[[1,2,3],[4],[],[5]]
$$

segments is not a standard function.
lines xs = segments $\left(/={ }^{\prime} \backslash n^{\prime}\right) x s$

Quiz: Comma-Separated Lists

Many Windows programs store data in files as "comma separated lists", for example

> 1,2,hello,4

Define commaSep :: String -> [String]
so that
commaSep "1,2,hello,4" == ["1", "2", "hello", " 4 "]

Quiz: Comma-Separated Lists

Many Windows programs store data in files as "comma separated lists", for example

> 1,2,hello,4

Define commaSep :: String -> [String]
so that
commaSep "1,2,hello,4" == ["1", "2", "hello", " 4 "]
commaSep xs = segments (/=',') xs

Defining words

We can almost define words using segments -- but segments (not. isSpace) "a b" = ["a", "", "b"]

Function composition (f.g) $x=f(g x)$
which is not what we want -- there should be no empty words.

> words xs = filter (/="") (segments (not . isSpace) xs)

Partial Applications

Haskell has a trick which lets us write down many functions easily. Consider this valid definition:

$$
\text { sum }=\text { foldr }(+) 0
$$

Partial Applications

$$
\text { sum }=\text { foldr }(+) 0
$$

Evaluate sum [1,2,3]

$=$ \{replacing sum by its definition $\}$
foldr (+) 0 [1,2,3]
$=\{b y$ the behaviour of foldr $\}$

$$
1+(2+(3+0))
$$

$$
=
$$

6

Now foldr has the right number of arguments!

Partial Applications

Any function may be called with fewer arguments than it was defined with.

The result is a function of the remaining arguments.

If $\quad \mathrm{f}$::Int -> Bool -> Int -> Bool
then f 42 :: Bool -> Int -> Bool
f 42 True :: Int -> Bool
f 42 True 42 :: Bool

Bracketing Function Calls and Types

We say function application "brackets to the left"
function types "bracket to the right"

If $\quad \mathrm{f}$::Int -> (Bool -> (Int -> Bool) $)$
then f 3 :: Bool -> (Int -> Bool)
(f 3) True :: Int -> Bool
((f 3) True) 4 :: Bool

Functions really take only one argument, and return (in this case) a function
expecting more as a result.

Designing with Higher-Order Functions

-Break the problem down into a series of small steps, each of which can be programmed using an existing higher-order function.
-Gradually "massage" the input closer to the desired output.
-Compose together all the massaging functions to get the result.

Example: Counting Words

Input

A string representing a text containing many words. For example
"hello clouds hello sky"

Output

A string listing the words in order, along with how many times each word occurred.
"clouds: 1 \nhello: 2\nsky: 1"
clouds: 1 hello: 2 sky: 1

Step 1: Breaking Input into Words

"hello clouds\nhello sky"

Step 2: Sorting the Words

["hello", "clouds", "hello", "sky"]

Digression: The groupBy Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy p xs
breaks xs into segments [$\mathrm{x} 1, \mathrm{x} 2 \ldots$], such that $\mathrm{p} \times 1 \mathrm{xi}$ is
True for each $x i$ in the segment.
groupBy $(<)[3,2,4,3,1,5]=[[3],[2,4,3],[1,5]]$ groupBy (==) "hello" = ["h", "e", "ll", "o"]

Step 3: Grouping Equal Words

["clouds", "hello", "hello", "sky"]
groupBy (==)
[["clouds"], ["hello", "hello"], ["sky"]]

Step 4: Counting Each Group

[["clouds"], ["hello", "hello"], ["sky"]]
map ($\lambda w s$-> (head ws, length ws))
[("clouds",1), ("hello", 2), ("sky",1)]

Step 5: Formatting Each Group

[("clouds",1), ("hello", 2), ("sky",1)]

["clouds: 1 ", "hello: 2", "sky: 1"]

Step 6: Combining the Lines

["clouds: 1", "hello: 2", "sky: 1"]

"clouds: 1 nnhello: $2 \backslash n s k y: 1$ n"

> clouds: 1
> hello: 2
> sky: 1

The Complete Definition

countWords :: String -> String
countWords = unlines

- map $\left(\lambda(w, n)->w+{ }^{\prime \prime}:>++s h o w n\right)$
- map ($\lambda w s->(h e a d ~ w s, ~ l e n g t h ~ w s)) ~$
- groupBy (==)
- sort
- words

Quiz: A property of Map

map :: (a -> b) -> [a] -> [b]

Can you think of a property that merges two consecutive uses of map?
prop_MapMap :: (Int -> Int) -> (Int -> Int) -> [Int] -> Bool prop_MapMap fg xs = $\operatorname{map} f(\operatorname{map} g x s)==\operatorname{map}(f . g) x s$

The Optimized Definition

countWords :: String -> String
countWords
= unlines
. map ($\lambda w s->$ head ws ++ ":" ++ show(length ws))

- groupBy (==)
- sort
. words

Where Do Higher-Order Functions Come From?

- Generalise a repeated pattern: define a function to avoid repeating it.
- Higher-order functions let us abstract patterns that are not exactly the same, e.g. Use + in one place and * in another.
- Basic idea: name common code patterns, so we can use them without repeating them.

Must I Learn All the Standard

 Functions?
Yes and No...

- No, because they are just defined in Haskell. You can reinvent any you find you need.
- Yes, because they capture very frequent patterns; learning them lets you solve many problems with great ease.
"Stand on the shoulders of giants!"

Summary

When to build HOFs

How to feed HOFs
Named definition
Lambda expressions
Sections
Partial application
Composition

Lessons

- Higher-order functions take functions as parameters, making them flexible and useful in very many situations.
- By writing higher-order functions to capture common patterns, we can reduce the work of programming dramatically.
- λ-expressions, partial applications, function composition and sections help us create functions to pass as parameters, without a separate definition.
- Haskell provides many useful higher-order functions; break problems into small parts, each of which can be solved by an existing function.

Reading

- /learnyouahaskell.com/higher-order-functions

