
{−
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad
−} −−−
−− standard type classes

class Show a where
 show :: a −> String

class Eq a where
 (==), (/=) :: a −> a −> Bool

class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a −> a −> Bool
 max, min :: a −> a −> a

class (Eq a, Show a) => Num a where
 (+), (−), (*) :: a −> a −> a
 negate :: a −> a
 abs, signum :: a −> a
 fromInteger :: Integer −> a

class (Num a, Ord a) => Real a where
 toRational :: a −> Rational

class (Real a, Enum a) => Integral a where
 quot, rem :: a −> a −> a
 div, mod :: a −> a −> a
 toInteger :: a −> Integer

class (Num a) => Fractional a where
 (/) :: a −> a −> a
 fromRational :: Rational −> a

class (Fractional a) => Floating a where
 exp, log, sqrt :: a −> a
 sin, cos, tan :: a −> a

class (Real a, Fractional a) => RealFrac a where
 truncate, round :: (Integral b) => a −> b
 ceiling, floor :: (Integral b) => a −> b

−−
−− numerical functions

even, odd :: (Integral a) => a −> Bool
even n = n ‘rem‘ 2 == 0
odd = not . even

−−
−− monadic functions
sequence :: Monad m => [m a] −> m [a]
sequence = foldr mcons (return [])
 where mcons p q = do x <− p
 xs <− q
 return (x : xs)

sequence_ :: Monad m => [m a] −> m ()
sequence_ xs = do sequence xs
 return ()

liftM :: (Monad m) => (a1 −> r) −> m a1 −> m r
liftM f m1 = do x1 <− m1
 return (f x1)
−−

−− functions on functions
id :: a −> a
id x = x

const :: a −> b −> a
const x _ = x

(.) :: (b −> c) −> (a −> b) −> a −> c
f . g = \ x −> f (g x)

flip :: (a −> b −> c) −> b −> a −> c
flip f x y = f y x

($) :: (a −> b) −> a −> b
f $ x = f x
−−
−− functions on Bools
data Bool = False | True

(&&), (||) :: Bool −> Bool −> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x

not :: Bool −> Bool
not True = False
not False = True
−−
−− functions on Maybe
data Maybe a = Nothing | Just a

isJust,isNothing :: Maybe a −> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing = not . isJust

fromJust :: Maybe a −> a
fromJust (Just a) = a

maybeToList :: Maybe a −> [a]
maybeToList Nothing = []
maybeToList (Just a) = [a]

listToMaybe :: [a] −> Maybe a
listToMaybe [] = Nothing
listToMaybe (a : _) = Just a

catMaybes :: [Maybe a] −> [a]
catMaybes ls = [x | Just x <− ls]
−−
−− functions on pairs
fst :: (a,b) −> a
fst (x,y) = x
snd :: (a,b) −> b
snd (x,y) = y

swap :: (a,b) −> (b,a)
swap (a,b) = (b,a)

curry :: ((a, b) −> c) −> a −> b −> c
curry f x y = f (x, y)

uncurry :: (a −> b −> c) −> ((a, b) −> c)
uncurry f p = f (fst p) (snd p)

−− functions on lists

map :: (a −> b) −> [a] −> [b]
map f xs = [f x | x <− xs]

(++) :: [a] −> [a] −> [a]
xs ++ ys = foldr (:) ys xs

filter :: (a −> Bool) −> [a] −> [a]
filter p xs = [x | x <− xs, p x]

concat :: [[a]] −> [a]
concat xss = foldr (++) [] xss

concatMap :: (a −> [b]) −> [a] −> [b]
concatMap f = concat . map f

head, last :: [a] −> a
head (x : _) = x

last [x] = x
last (_ : xs) = last xs

tail, init :: [a] −> [a]
tail (_ : xs) = xs

init [x] = []
init (x : xs) = x : init xs

null :: [a] −> Bool
null [] = True
null (_ : _) = False

length :: [a] −> Int
length = foldr (const (1+)) 0

(!!) :: [a] −> Int −> a
(x : _) !! 0 = x
(_ : xs) !! n = xs !! (n−1)

foldr :: (a −> b −> b) −> b −> [a] −> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

foldl :: (a −> b −> a) −> a −> [b] −> a
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs

iterate :: (a −> a) −> a −> [a]
iterate f x = x : iterate f (f x)

repeat :: a −> [a]
repeat x = xs where xs = x : xs

replicate :: Int −> a −> [a]
replicate n x = take n (repeat x)

cycle :: [a] −> [a]
cycle [] = error " Prelude.cycle: empty list"
cycle xs = xs’ where xs’ = xs ++ xs’

tails :: [a] −> [[a]]
tails xs = xs : case xs of
 [] −> []
 _ : xs’ −> tails xs’

take, drop :: Int −> [a] −> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x : xs) = x : take (n−1) xs

drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_ : xs) = drop (n−1) xs

splitAt :: Int −> [a] −> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

takeWhile, dropWhile :: (a −> Bool) −> [a] −> [a]
takeWhile p [] = []
takeWhile p (x : xs)
 | p x = x : takeWhile p xs
 | otherwise = []

dropWhile p [] = []
dropWhile p xs@(x : xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

span :: (a −> Bool) −> [a] −> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String −> [String]
−− lines "apa\nbepa\ncepa\n"
−− == ["apa","bepa","cepa"]
−− words "apa bepa\n cepa"
−− == ["apa","bepa","cepa"]

unlines, unwords :: [String] −> String
−− unlines ["apa","bepa","cepa"]
−− == "apa\nbepa\ncepa\n"
−− unwords ["apa","bepa","cepa"]
−− == "apa bepa cepa"

reverse :: [a] −> [a]
reverse = foldl (flip (:)) []

and, or :: [Bool] −> Bool
and = foldr (&&) True
or = foldr (||) False

any, all :: (a −> Bool) −> [a] −> Bool
any p = or . map p
all p = and . map p

elem, notElem :: (Eq a) => a −> [a] −> Bool
elem x = any (== x)
notElem x = all (/= x)

lookup :: (Eq a) => a −> [(a,b)] −> Maybe b
lookup key [] = Nothing
lookup key ((x,y) : xys)
 | key == x = Just y
 | otherwise = lookup key xys

sum, product :: (Num a) => [a] −> a
sum = foldl (+) 0
product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] −> a
maximum [] = error " Prelude.maximum: empty list"

maximum (x : xs) = foldl max x xs

minimum [] = error " Prelude.minimum: empty list"
minimum (x : xs) = foldl min x xs

zip :: [a] −> [b] −> [(a,b)]
zip = zipWith (,)

zipWith :: (a−>b−>c) −> [a]−>[b]−>[c]
zipWith z (a : as) (b : bs)
 = z a b : zipWith z as bs
zipWith _ _ _ = []

unzip :: [(a,b)] −> ([a],[b])
unzip =
 foldr (\(a,b) ~(as,bs) −> (a : as,b : bs)) ([] , [])

nub :: Eq a => [a] −> [a]
nub [] = []
nub (x : xs) =
 x : nub [y | y <− xs, x /= y]

delete :: Eq a => a −> [a] −> [a]
delete y [] = []
delete y (x : xs) =
 if x == y then xs else x : delete y xs

(\\) :: Eq a => [a] −> [a] −> [a]
(\\) = foldl (flip delete)

union :: Eq a => [a] −> [a] −> [a]
union xs ys = xs ++ (ys \\ xs)

intersect :: Eq a => [a] −> [a] −> [a]
intersect xs ys = [x | x <− xs, x ‘elem‘ ys]

intersperse :: a −> [a] −> [a]
−− intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose :: [[a]] −> [[a]]
−− transpose [[1,2,3],[4,5,6]]
−− == [[1,4],[2,5],[3,6]]

partition :: (a −> Bool) −> [a] −> ([a],[a])
partition p xs =
 (filter p xs, filter (not . p) xs)

group :: Eq a => [a] −> [[a]]
group = groupBy (==)

groupBy :: (a −> a −> Bool) −> [a] −> [[a]]
groupBy _ [] = []
groupBy eq (x : xs) = (x : ys) : groupBy eq zs
 where (ys,zs) = span (eq x) xs

isPrefixOf :: Eq a => [a] −> [a] −> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x : xs) (y : ys) = x == y
 && isPrefixOf xs ys
isSuffixOf :: Eq a => [a] −> [a] −> Bool
isSuffixOf x y = reverse x
 ‘isPrefixOf‘ reverse y

sort :: (Ord a) => [a] −> [a]
sort = foldr insert []

insert :: (Ord a) => a −> [a] −> [a]
insert x [] = [x]
insert x (y : xs) =
 if x <= y then x : y : xs else y : insert x xs

−−
−− functions on Char
type String = [Char]

toUpper, toLower :: Char −> Char
−− toUpper ’a’ == ’A’
−− toLower ’Z’ == ’z’

digitToInt :: Char −> Int
−− digitToInt ’8’ == 8

intToDigit :: Int −> Char
−− intToDigit 3 == ’3’

ord :: Char −> Int
chr :: Int −> Char
−−
−− Signatures of some useful functions
−− from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
−− the generator for values of a type
−− in class Arbitrary, used by quickCheck

choose :: Random a => (a, a) −> Gen a
−− Generates a random element in the given
−− inclusive range.

oneof :: [Gen a] −> Gen a
−− Randomly uses one of the given generators

frequency :: [(Int, Gen a)] −> Gen a
−− Chooses from list of generators with
−− weighted random distribution.

elements :: [a] −> Gen a
−− Generates one of the given values.

listOf :: Gen a −> Gen [a]
−− Generates a list of random length.

vectorOf :: Int −> Gen a −> Gen [a]
−− Generates a list of the given length.

sized :: (Int −> Gen a) −> Gen a
−− construct generators that depend on
−− the size parameter.
−−
−− Useful IO function
putStr, putStrLn :: String −> IO ()
getLine :: IO String
readFile :: FilePath −> IO String
writeFile :: FilePath −> String −> IO ()

