Recursive Data Types

s B

Modelling Arithmetic
Expressions

Imagine a program to help school-children learn
arithmetic, which presents them with an expression to
work out, and checks their answer.

What is (1+2)*3? 8
Sorry, wrong answer!

The expression (1+2)*3 is data as far as this program
is concerned (not the same as 9!). How shall we
represent it? What is "1+2"++"3"? J

What is "1+hello world**"? J

Modelling Expressions

Let’s design a datatype to model arithmetic expressions
-- not their values, but their structure.

Modelling Expressions

Let’s design a datatype to model arithmetic expressions
-- not their values, but their structure.

An expression can data Expr = An expression can data Expr =
be: be:

Num Num Integer
+a number n | Add o *a number n | Add Expr Expr
«an addition a+b [Mul *an addition a+b e e
«a multiplication a*b What information *a multiplication a*b

should we store
A recursive data type
Examples Example: Evaluation

data Expr

The expression:
2

2+2

(1+2)*3

1+2*3

= Num Integer
| Add Expr Expr
| Mul Expr Expr

is represented by:

Num 2

Add (Num 2) (Num 2)

Mul (Add (Num 1) (Num 2)) (Num 3)
Add (Num 1) (Mul (Num 2) (Num 3))

Define a function
eval :: Expr -> Integer
which evaluates an expression?
Example: eval (Add (Num 1) (Mul (Num 2) (Num 3)))

evaluates to 7

Hint: Recursive types often mean recursive functions!

Use pattern matching:
eval :: Expr -> Integer

eval (Num n)
eval (Add a b)
eval (Mul a b)

n

eval a + eval b

eval a * eyal b

aand b are of
type Expr.

Recursive types mean
recursive functions!

one equation for each case.

Showing Expressions

Expressions will be more readable if we convert them to
strings.

showExpr :: Expr -> String
showExpr (Num n) =show n

showExpr (Add a b) = showExpr a ++ "+” ++ showExpr b

showExpr (Mul a b) = showExpr a ++ "*” ++ showExpr b

Main> showExpr (Mul (Num 1) (Add (Num 2) (Num 3)))
"*043"

Quiz

Which brackets are necessary? 1+(2+3)
1+(2*3)
1*(2+3)

What kind of expression may need to be bracketed?
When does it need to be bracketed?

Quiz

Which brackets are necessary? 1+(2+3)
1+(2°3)
17(2+3)

Additions

What kind of expression may need to be bracketed?
When does it need to be bracketed?

Inside multiplications.

Idea

Format factors differently:

showExpr :: Expr -> String

showExpr (Num n) = show n

showExpr (Add a b) = showExpr a ++ "+" ++ showExpr b
showExpr (Mul a b) = showFactor a ++ "*" ++ showFactor b

showFactor :: Expr -> String
showFactor (Add a b) = "("++showExpr (Add a b)++")"
showFactor e = showExpr e

Making a Show instance

instance Show Expr where
show = showExpr

data Expr = Num Integer | Add Expr Expr | Mul Expr Expr
deriving CSkow, Eq)

(Almost) Complete

Program | o
questions :: IO ()| New random seed B b wifitn
questions = F

do rnd <- newSthe

let e = unGen arbitrary rnd 3
putStr ("What is "++show e++"? ")
ans <- getlLine
putStrLn (if read ans==eval e
then/ \Right!" else "Wrong!")

let: Give
name to
aresult

questions

Opposite of show

Using QuickCheck Generators in
Other Programs

» Test.QuickCheck.Gen exports
—unGen:: Gen a -> StdGen -> Int -> a

Random
seed

QuickCheck
generator

Size parameter
for generation

+ Size is used, for example, to bound
Integers, size of data structures etc.

Generating Arbitrary
Expressions

instance Arbitrary Expr where
arbitrary = arbExpr

arbExpr :: Gen Expr Does not
arbExpr = work! (why?)
oneof [do n <- arbitrary

return (Num n)
, do a <- arbExpr
b <- arbExpr
return (Add a b)
, do a <- arbExpr
b <- arbExpr
return (Mul a b)]

Generates
infinite
expressions!

Generating Arbitrary
Expressions

instance Arbitrary Expr where
arbitrary = sized arbExpr

Size argument
changes at each
recursive call

arbExpr :: Int -> Gen Expr
arbExpr s =
frequency [(1, do n <- arbitrary
return (Num n))
, (s, do a <- arbExpr s’
b <- arbExpr s’
return (Add a b))
, (s, do a <- arbExpr s’
b <- arbExpr s’
return (Mul a b))]

where s’ = s “div’ 2

Demo

Main> questions

What is -3*4*-1*-3*-1*-1? -36

Right!

What is 15*4*(-2+-13+-14+13)? -640
Wrong!

What is 0? 0

Right!

What is (-4+13)*-9*13+7+15+12? dunno

Program error: Prelude.read: no parse

The Program

Crucial line:

putStrLn (if read ans==eval e then "Right!"
H_/ else "Wrong!")

ans == show (eval e)

Reading Expressions

» How about a function
—readExpr :: String -> Expr
* Such that
—readExpr “12+173” =
« Add (Num 12) (Num 173)
—readExpr “12+3*4” =
* Add (Num 12) (Mul (Num 3) (Num 4))

We see how to
implement this
in the next
lecture

Symbolic Expressions

* How about expressions with variables in
them?
data Expr = Num Integer

| Add Expr Expr
| Mul Expr Expr
| Var Name
type Name = String

Add Var and
change functions
accordingly

Gathering Variables

It is often handy to know exactly which variables occur in
a given expression

vars :: Expr -> [Name]

vars (Numn) =]

vars (Add a b) = vars a ‘union’ vars b
(
(

vars (Varx) =[x]

vars (Mul a b) = vars a "union” vars b

From Data.List;
combines two
lists without
duplication

Evaluating Expressions

We would like to evaluate expressions with variables. What is
the type?

Table of values for variables }

eval :: [(Name, Integer)] -> Expr -> Integer
eval env (Num n) =n

eval env (Var y) fromJust (lookup y env)
eval env (Add a b) = eval env a + eval env b

eval env (Mul a b) = eval env a * eval env b

Prelude> :i lookup

lookup :: (Eq a) => a ->[(a, b)] -> Maybe b

Symbolic Differentiation

Differentiating an expression produces a new expression. We

implement it as:
P Variable to
diff :: Expr -> Name -> Expr differentiate wrt.

diff (Num n) x = Num @
diff (var y) x | x==y = Num 1
| x/=y = Num @
diff (Add a b) x = Add (diff a x) (diff b x)
diff (Mul a b) x = Add (Mul a (diff b x))

(Mul b (diff a x))

Testing differentiate

Main> diff (Mul (Num 2) (Var “x”)) “x”
2*1+0*x

Not quite what we expected!
-- not simplified

What happens?

d (2*x) = 2
dx
differentiate (Mul (Num 2) (Var "x")) "x”
— Add (Mul (Num 2) (differentiate (Var "x") "x"))
(Mul (Var "x”) (differentiate (Num 2) "x"))
—— Add (Mul (Num 2) (Num 1))

(Mul (Var "x") (Num 0))

How can we make differentiate simplify the result?

“Smart” Constructors

* Define

add :: Expr -> Expr -> Expr

add (Num @) b =b
add a (Num @) = a
add (Num x) (Num y) = Num (x+y)

add a b = Add a b

By using add instead of Add,
certain simplifications are
performed when constructing
the expression!

more
simplification
is possible...

Testing add

Main> Add (Num 2) (Num 5)
2+5

Main> add (Num 2) (Num 5)
7

diff ::

diff
diff

diff
diff

Symbolic Differentiation

Expr -> Name -> Expr
(Num n) x = Num ©
(Var y) x

| x==y = Num 1
| x/=y = Num @

(Add a b) x = add (diff a x) (diff b x)
(Mul a b) x = add (mul a (diff b x))
(mul b (diff a x))

“Smart” Constructors -- mul

How to define mul?

mul :: Expr -> Expr -> Expr
mul (Num @) b = Num ©
mul a (Num @) = Num ©
mul (Num 1) b =b

mul a (Num 1) = a

mul (Num x) (Num y) = Num (x*y)
mul a b =Mul a b

Expressions

Expr as a datatype can represent
expressions

— Unsimplified

— Simplified

— Results

— Data presented to the user

Need to be able to convert between
these

An Expression Simplifier

» Simplification function
— simplify :: Expr -> Expr

simplify :: Expr -> Expr
simplify e | null (vars e) = ?

N

Exercises

Testing the Simplifier

arbExpr :: Int -> Gen Expr
arbExpr s =
frequency [(1, do n <- arbitrary
return (Num n))
, (s, do a <- arbExpr s’

b <- arbExpr s’ Cut'n’paste
return (Add ab)) | here should
, (s, do a <- arbExpr s’ be refactored

b <- arbExpr s’
return (Mul a b))
, (1, do x <- elements ['X",”y","Z’]
return (Var x))]
where
s’ =s'div 2

Testing an Expression
Simplifier
* (1) Simplification should not change the
value

prop_SimplifyCorrect e env =
eval env e == eval env (simplify e)

prop_SimplifyCorrect e (Env env) =
eval env e == eval env (simplify e

Generate lists of
values for variables

Testing an Expression
Simplifier

data Env = Env [(Name,Integer)]
deriving (Eq, Show)

instance Arbitrary Env where
arbitrary =
do a <- arbitrary
b <- arbitrary
c <- arbitrary
return (Env [("X",a),("y",b),("Z",c)])

Testing an Expression
Simplifier
* (2) Simplification should do a good job

prop_SimplifyNoJunk e =
noJunk (simplify e)
where
noJunk (Add a b) = not (isNum a && isNum b)
&& noJunk a && noJunk b

You continue at the
exercises!

Exercises

+ Build and test an expression simplifier!

+ | found many subtle bugs in my own
simplifier!
— Often simplifier goes into an infinite loop
— Use verboseCheck instead of quickCheck

(prints test case before every test, so you
see them even if the test loops or crashes)

Summary

* Recursive data-types can take many
forms other than lists

» Recursive data-types can model
languages (expressions, natural
languages, programming languages)

» Functions working with recursive types
are often recursive themselves

* When generating random elements in
recursive datatypes, think about the size

Next Time

* How to write parsers
—readExpr :: String -> Expr

