
Chalmers | GÖTEBORGS UNIVERSITET

K. V. S. Prasad, Dept. of Computer Science and Engineering

Notation for Concurrent Programming TDA383/DIT390

October 19, 2016

This is a copy of the Appendix to the examination question paper. As in the exam, the text of the
Appendix starts on a new page. It summarises the notation used in the question paper.

You can use this notation in your answers, but you can also use Java, Erlang or Promela provided
you give your constructs the same semantics as the question requires. The exact syntax of the
programming notations you use is not so important as long as the graders can understand the intended
meaning. If you are unsure, explain your notation.

1



A Appendix: Pseudo-code, LTL and Linda notations

A.1 SUMMARY OF BEN-ARI’S PSEUDO-CODE NOTATION

1. Global variables are declared centred at the top of the program.

Data declarations are of the form integer i := 1 or boolean b := true, giving type, vari-
able name, and initial value, if any. Assignment is written := also in executable statements.
Arrays are declared giving the element type, the index range, the name of the array and the
initial values. E.g., integer array [1..n] counts := [0, ..., 0].

2. The statements of the processes are often in columns headed by the names of the process. If
several processes p(i) have the same code, parameterised by i, they are given in one column.
Indentation indicates sub-statements of compound statements.

3. All commands are numbered, but not control flow directions such as loop forever and repeat.
If a continuation line is needed, it is left un-numbered or numbered by an underscore p . Num-
bered statements are atomic. Assignments and expression evaluations are atomic.

4. The statement await b is equivalent to either block until C or to while not b do nothing,
a busy wait. Which interpretation is meant will be pointed out in any question using await. Un-
der the first interpretation, the system may deadlock (everyone is blocked); under the second,
the system may livelock (everyone busy-waits). The only difference is in CPU-cycles. Both
states show mutual impediment to progress, or circular waiting.

5. For channels, ch => x means the value of the message received from the channel ch is assigned
to the variable x. and ch <= x means that the value of the variable x is sent on the channel ch.

6. A scenario is a list of the labels of the statements in the order of execution. With synchronous
channels, sender and receiver act together, so show both statements as a pair being a single
move in the scenario.

EXTENSION OF BEN-ARI’S PSEUDO-CODE NOTATION

1. You can explicitly declare processes by a line of the kind proctype p(integer i) giving the
name of the process and its parameters. Explicit commands like run p(5); run p(6) are
used to run processes, in this case to start process p with parameter 5, and then start another
instance of p with parameter 6. An explicit init process starts the program.

These extensions give new expressive power. The run command means the number of processes
in a program can change during execution. Processes can pass channels as parameters. This
allows the network of channels between processes to change dynamically.

2. We extend Ben-Ari’s notation for channels, allowing channel capacity(n) of boolean
forks[5]. This declares an array of channels, fork[0] through fork[4], each a channel
of buffer capacity n, carrying boolean values. So n=0 specifies a synchronous channel, and n=5
specifies an asynchronous channel with buffering capacity 5. For theoretical discussion, we can
also permit n to be infinite. The capacity declaration capacity(0) can be dropped, (i.e. in
that case, assume n=0 and therefore synchrony).

3. Input commands are allowed to attach a timeout clause, a sequence of statements that must end
with goto label. If the channel is empty when an input command runs, the process executes the
code between timeout and goto, and then jumps to the statement label.

2



A.2 LOGIC

1. The symbols used here for the operators of propositional logic are: ¬ for “not”, ∨ for “or”, ∧ for
“and”, and→ for “implies”, while p iff q (i.e., p if and only if q) is a convenient abbreviation
for (p→ q)∧ (q→ p) . These have the obvious meanings, but two differ from what might be
your interpretation of the name. Note that p∨ q (“p or q”) is false iff both p and q are false.
This is an “inclusive or”, so p∨ q is true if both p and q are true. Also, note that p→ q (“p
implies q”) is false iff p is true and q is false. In particular, this means p→ q is true if p is false.

2. A proposition such as q2 (process q is at label q2) is true of a state s iff process q is at q2 in s.

3. We use Linear Temporal Logic (LTL), which is propositional logic with two added operators,
� and ♦. A formula φ of LTL holds for state s (or, s satisfies φ, written s |= φ) if every path
from s satisfies φ.

A path is a possible future of the system, a possibly infinite sequence of states, each reachable
from the previous state in the path.

A path π satisfies �φ (written π |=�φ) if φ is true of the first state of π, and for all subsequent
states in π. The path π satisfies ♦φ (written π |= ♦φ) if φ is true of some state in π.

Note that � and ♦ are duals:

�φ≡ ¬♦¬φ and ♦φ≡ ¬�¬φ.

A.3 LINDA

In Linda programs, processes communicate via tuples posted in a space. The first element of a tuple
is often a constant string, saying what kind of tuple it is. Processes interact with the space through
three kinds of atomic actions.

post(t) Here t is a tuple 〈x1,x2, ..〉, where the xi are constants or values of variables. post(t) posts
t in the space, and unblocks an arbitrary process among those waiting for a tuple of this pattern.

remove(x1,x2, ..) Here the parameters must be variables or constants. The command remove(x1,x2, ..)
removes a tuple 〈x1,x2, ..〉 that matches the pattern of the parameters, and assigns the tuple val-
ues to the variable parameters. If no matching tuple exists, the process is blocked. If there are
several matching tuples, an arbitrary one is removed.

read(x1,x2, ..) Like remove(x1,x2, ..), but leaves the tuple in the space.

We allow two extensions of the input constructs remove and read:

1. remove and read actions can use eval(n) to mean the value of variable n. Suppose n=13.
Then the pattern read(’start’, n) will match the tuple (’start’, 14), resetting the value
of n to 14, whereas read(’start’, eval(n)) will only match the tuple (’start’, 13).

2. To remove and read actions can be attached a timeout clause, a sequence of statements that
must end with goto label. If there are no tuples that match the given pattern, the process
executes the code between timeout and goto, and then jumps to the statement label.

——-END of APPENDIX——

3


