LTL, Dekker’s algorithm, ...

K. V.S. Prasad
Dept of Computer Science
Chalmers University

Monday 3 Oct 2016

Questions?

e Student reps see me after class
* QU students other than IT program:

— Meet in the break, nominate some reps

Linear Temporal Logic (LTL)

* From Huth + Ryan
— ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/tmp/Anon

gporn/Ch1+3.pdf
— Defn. 3.4 (p 186)

— Fig. 3.5, defn. 3.5, defn 3.6 (p 188)

* Gmeans| | and F means ¢ (also used in Wikipedia LTL)
e Canignore X, U, WandR

— But X (next) and U (until) are useful at least for LTL practice

— Defn. 3.8, p. 190, and the sentence preceding.

— These definitions establish
* A propositional formula A can hold at a state s
* An LTL formula can hold or fail for a path
* An LTL formula holds for a state s if it holds for all paths from s

Why temporal logic?

* For safety claims, we can usually manage with
— Assertions
* In the CS for p, say “qis not in its CS”

— Or a monitor process

e With just one command, assert =(p in CS * g in CS)

* Runs in parallel with p and q

— So the assert can run any time, and SPIN will catch any run where
it fails

* But liveness properties cannot in general be
caught in this way

— Though special cases such as termination might be
caught by ad-hoc methods

Counterexamples

* For a safety statement (typically | |A)
— A state sn such -A holds at sn
— This then yields

* If tis a path that includes sn, then r=| |A, i.e. m does not
satisfy| |A

* Soif sis a state from which 1t runs, then s¥[A

* A liveness statement (typically QA) fails for s

— A path it from s includes a loop, such that A does not hold
in the loop or before it

e WARNING: | | and ¢ are duals so either can be used
above. What is a counterexample depends on the
content of the claim, safety or liveness, not on whether
the outermost symbol is | | or 0.

Temporal algebra

distributes | | over 4, i.e,,

A/\

B iff

(A" B)

— Both sides say that both A and B hold for t=0
Why doesn’t | | distribute overv ?
— | JAv | |B = either A holds from now on, or B does

— | [(Av B) = either A or B holds from now on

* Thisis true in a system where only A holds after 1, 3, 5 ... steps and
only B holds after 0, 2, 4, 6 ... steps. Then neither A nor B holds always

¢ distributes over v, i.e., 0A v OB iff 0(A v B)
— Both say every path has a time when either A or B holds

Why doesn’t ¢ distribute over » ?

— OA N OB = exist t1, t2 such that A(t1) and B(t2)

— O(A M B) = exist t such that A*B holds at t

-

More temporal algebra

A=0-A
« [JA=-0-A (sowe only need 9)

-0A=| |-A

Aiff | |A

OOA iff OA

— For some r,s,t 20, lhs says A(r+s) and rhs says A(t)

0

OA iff | |OA

— Rhs = “A will be true infinitely often”
— Lhs = “at some time, A will be true infinitely often”

Sketched the ideas here. Formally, use the definitions 4.6
and 4.7 in the book (p72,73). Or better, use Ruth+Ryan.

Temporal algebra using X and U

e 0A=trueUA

— Eventually, A becomes true

e X(AvB)=XAvXB
 X(AMB) = XA A XB
e -XA=X-A

« [JA=AAX]A
e O0A=AV X0A

e X(AUB)=(XA)U(XB)
« AUB=AU(AUB)
« AUB=BV (A/AXAUB))

Mutex proof for Dekker’s algorithm

* Abbreviations: ti means turn =i, wp=wantp

* Invariants (prove by induction)
— | [tlvt2 ()
— (p3..p5 v p8..p10) iff wp similar for g

—(plvp2vpbvp?7)iff-wp similar for g

— p8 -> -wq (else, cannot pass while in p3)
* Imply mutex:

— p8 M g8 iff wp » wq but p8 -> -wqg

Dekker progress proof, 1
(variant of UTwente proof)

* To prove:

(p2 -> Op8)

— Every path from a p2 will lead to a p8

* First, note that | |(p2 -> 0p3) by fairness

e Will show
— Case 1: ¢

(p3 -> 0p8)

gl (q gets stuck in NCS)

e qliff-wq, so| |qgl->]| | -wq

(p3 A

ql)=>| [(p3 " | |-wq)=>]| | 0 p8

by while loop

Dekker progress proof, 2
(variant of UTwente proof)

 Toshow | |(p3->90p8), continued
—Case 2:| | 0-ql
* the other case, g leaves NCS

* Proof by contradiction, assume p3 * -p8, i.e.,

* Lemmal:| | 0tl
— Again, by contradiction, assume [| t2
— [l(p3..p7 A t2) => O[|pb6

=>0-wp
=>Qq9 (by progress of q)
=>t1 (Contradiction!)

So[| p3..p7 => 0t1

p3..p7

Dekker progress proof, 3
(variant of UTwente proof)
 Toshow | |(p3-><>p8)

— Case 2: | |0—-ql
— | |p3..p7 =>0tl
=> Q| |t1

=> 0| |(p3 v p4)

=> Q| |wp
=> Q| |g6
=> Q| |-wqg
=> 0p8

— Hence -| |p3..p7 and

(p3 A

continued
continued

prev page
(never reach p9)
(p3..p7)

(by invariant)

(also by invariant)
(contradiction!)

0-ql => 0p8)

— Putting both cases together (g and NCS), | |(p3->0p8)

Notes on Dekker

* An alternative approach might be to try to
improve the proof in the textbook.
Reformulate the correct but unusable
statement in the middle of p 81
p4”| |(turn=2)->0p5

 What do we need instead of the | |(turn=2)?

On progress proofs

Delicate (many cases, did we miss any?)
Labour intensive

Error prone (even Ben-Ari’s book?)
Need machine check

Then why study them at all by hand?

— To know what to assert
* Build the right system
* The system will check that the system is built right

