State diagrams, interleaving,
atomic actions, critical sections

K. V. S. Prasad
Dept of Computer Science

Chalmers University
1 September 2016



Functional Programming (F.P.)

*|f you have never done F. P., get started early on
the Erlang tutorial.

*Even if you have, take a quick look
* to get an overview

*to understand how hard or easy it will be for
you to learn Erlang



Reminder

* Next course rep meeting Monday 5 Sep after the lecture
 Say what you think / need / would like to your rep
» Say what you think is going well as well as what could be better (for you)



Plan for today

* Example: Sharing a meal, or a bank a/c
 State diagrams
e Concurrency models — (a)synchrony, time, ...

e Critical sections
e Atomic actions

* History

* Chaps from Ben-Ari (for 1 and 2 Sep 2016)
e 2.1to 2.5
* 3.1to 3.2 (maybe more if time permits)
* 6.1t0 6.4 (maybe 6.7)
e 7.1-7.4,7.10



Sharing a meal

* Consider a program
* proctype P {grab knife; grab fork; eat}
* proctype Q {grab fork; grab knife; eat}

Here, “proctype” (as in Promela, for those who are following it)
* is a type declaration.
* does not produce a process

* That happens when “run P” or “run Q” is executed
* Both instantiates and starts a copy of P or Q

Then {run P; run P} will result in both eating one after the other
But {run P; run Q} might result in P eating after Q or the other way, or in deadlock.



Shared bank account

* proctype W(i) {loc(i):= bal; loc(i)--; out(i) 1; bal:=loc(i)}
* bal is shared global balance
* Joc(i) is local register
* out(i) is payout

* Then {run W(5); run W(6)} could result in both succeeding in their
withdrawals, but with the account being debited just once, as in the
following scenario

* loc(5):=bal; loc(6):=bal;
loc(5)--; loc(6)--;
out(5) 1; out(6) 1;
bal:=loc1; bal:=loc2



Interleaving

* Each process executes a sequence of atomic
commands (usually called “"statements”, though |
don’t like that term).

* Each process has its own control pointer, see Alg 2.1
of Ben-Ari

* For Alg 2.2, see what interleavings are impossible
*See slides 2.3 — 2.7 of Ben-Ari




State diagrams

 |n slides 2.4 and 2.5, note that the state describes
variable values before the current command is
executed.

*In 2.6, note that the "statement” part is a pair, one
statement for each of the processes

 Not all thinkable states are reachable from the start
state



Scenarios

* A scenario is a sequence of states
* A path through the state diagram
* See Ben-Ari slide 2.7 for an example
* Each row is a state
* The statement to be executed is in bold



The counting example

* See algorithm 2.9 on slide 2.24
* What are the min and max possible values of n?

* How to say it in C-BACI, Ada and Java
©2.27 t0 2.32



Atomic statements

* The thing that happens without interruption
e Can be implemented as high priority

* Compare algorithms 2.3 and 2.4
e Slides2.12to02.17

e 2.3 can guarantee n=2 at the end
* 2.4 cannot

* hardware folk say there is a “race condition”
* We must say what the atomic statements are

* In the book, assignments and boolean conditions
 How to implement these as atomic?



The Critical Section Problem

e Attempts to solve them

* without special hardware instructions
e Assuming load and store are atomic

e Designing suitable hardware instructions



Requirements and Assumptions

* Correctness requirements
* Both p and g cannot be in their CS at once (mutex)

* If p and g both wish to enter their CS, one must succeed eventually (no
deadlock)

* If p tries to enter its CS, it will succeed eventually (no starvation)

* Assumptions
e A process in its CS will leave eventually (progress)
* Progress in non-CS optional



Comments

* Pre- and post-protocols
* These don’t share local or global vars with the rest of the program

* The CS models access to data shared between p and g



First try (alg 3.2, slide 3.3)

* The full state diagram shows only 16 states are reachable, out of 32
* These exclude states (p3,93,*) so mutex is OK.

* The abbreviated program reduces state space

* if p1is stuck in NCS with turn=1, q starves

* Deadlock free in the sense that p can enter CS

* Error: p and g both set and test "turn”; if one dies the other is stuck



Semaphores, Monitors,
Protected Objects

K. V. S. Prasad
Dept. of Computer Science

Chalmers University
2 Sep 2016



Questions?

 Reminder: course rep meeting next Monday 5 Sep
* give your rep notes, suggestions, etc. during the break

* Anything you want to say
« Comments, questions, stray thoughts, etc.
* Are we too fast/slow?

* More status questions
* How did the demo/viva go?
e Mail us if there are problems (of any kind)



Pet examples

* Passing a door from opposite directions
* If both sleep until the other passes — deadlock
* If both eager — livelock (busy waiting)

* Library

* The knife (atomic; deadlock if fork+knife picked up in either order)
* The printer (grab then file, or atomic per sheet?)

* Count up to 20

* Max, sort by chemical machine

* Max and grabbing by broadcast



Plan

* Chap 6 examples

 Chap 7
* Monitors (contd.)
* protected objects

* Transition to message passing
Chap 3 & 4 (skipped for now)

REMINDER: do the exercises in Chaps. 1, 2, 3,6



Primitives and Machines

* We see this repeatedly in Computer Science
* Whether for primitives or whole machines

* Recognise pattern in nature or in use

* Critical section motivating ex. for semaphores
 Specify primitive or machine

e Set or queue? Direct handover upon signal?

* Figure out range of use and problems
* today

 Figure out (efficient) implementation
* Maybe later



CS problem for n processes

* See alg 6.3 (p 113, s 6.5)

* The same algorithm works for n procs

* The proofs for mutex and deadlock freedom work
* We never used special properties of binary sems

* But starvation is now more likely
* pand g can release each other and leave r blocked

* Exercise: If k is set to m initially, at most m processes can be in their
CS’s.



Mergesort using semaphores

* See p 115, alg 6.5 (s 6.8)

* The two halves can be sorted independently
* No need to synch
* Merge, the third process,
* has to wait for both halves
* Note semaphores initialised to O
* Signal precedes wait
* Done by process that did not do a wait

* Not a CS problem, but a synchronisation one



Producer - consumer

* Yet another meaning of “synchronous”
» Buffer of O size

e Buffers can only even out transient delays
* Average speed must be same for both

* Infinite buffer first. Means
* Producer never waits
* Only one semaphore needed
* Need partial state diagram
* Like mergesort, but signal in a loop

* See algs 6.6 and 6.7



Infinite buffer is correct

e |[nvariant

e #sem = #buffer
* Oinitially
* Incremented by append-signal
* Need more detail if this is not atomic
 Decremented by wait-take

* So cons cannot take from empty buffer

* Only cons waits — so no deadlock or starvation, since prod will always
signal



Bounded buffer

* See alg 6.8 (p 119, s 6.12)

 Two semaphores
* Cons waits if buffer empty
* Prod waits if buffer full

e Each proc needs the other to release "its” sem
* Different from CS problem

* “Split semaphores”

* Invariant
* notEmpty + notFull = initially empty places



Different kinds of semaphores

e "Strong semaphores”

e use queue insteadof set of blocked procs
* No starvation

* Busy wait semaphores

* No blocked processes, simply keep checking
* See book re problems about starvation
e Simpler.
» Useful in multiprocessors where each proc has own CPU

 The CPU can’t be used for anything else anyway
e Orif there is very little contention



Dining Philosophers

* Obvious solution deadlocks (alg 6.10)
* Break by limiting 4 phils at table (6.11)
* Or by asymmetry (6.12)



Semaphore recap

* Designed for CS problem or atomic actions
e (even with n-proc)
* Avoid busy waiting

* But for the producer-consumer problem

* The correctness of each proc
* Depends on the correctness of the other
* Not modular

* Monitors modularise synchronisation
e for shared memory



Correctness, and software processes

* Look at state diagram (p 112, s 6.4)
* Mutex, because we don’t have a state (p2, g2, ..)
* No deadlock

* Of a set of waiting (or blocked) procs, one gets in
* Simpler definition of deadlock now
* Both blocked, no hope of release
* No starvation, with fair scheduler
* A wait will be executed
* A blocked process will be released



Monitors = synchronised objects

* A type of monitors looks like a class with sync

* An operation on a monitor
* Looks atomic

* All operations are mutex w.r.t. each other
* i.e., only one operation at a time

* So alg 7.1 can only result in n=2 at the end.



Confusions with O-O programming

* Monitors are static
* They don’t "send messages” to each other

* Processes are the running things
* They can enter the monitor one at a time

* There is no queue of processes waiting to get in,
* Onlyaset



Monitors centralise

e Access to the data

* Natural generalisation of objects in OO, but
* With mutex
e With synchronisation conditions

* Could dump everything in the kernel

* But this centralises way too much
* So monitors are a compromise



Condition Variables = named queues

* Mutex?
e Monitors provide it, by definition (See alg 7.1)

* But often, need explicit synchronisation

* i.e., processes wait for different events
* Producer waits till (someone makes) buffer notFull
* Consumer waits till (someone makes) buffer notEmpty

* They need to be unblocked
* when the corresponding event occurs

* In monitors, each such event

* Has a queue associated with it
* In fact, for the monitor, the “event” is just the queue
* These queues are called “condition variables”



Semaphore implemented by monitor

* Alg 7.2

* No explicit release of monitor lock
* Leave when done

* waitC always blocks
* This is not the semaphore’s wait
 When unblocked by signal

* Must wait till signalling proc leaves monitor

* signalC has no effect on empty queue
* Semaphore signal always has an effect



waitC (on monitor condition var)
Vs wait on semaphore

waitC (on monitor condition var)
Append p to cond

p.State <- blocked

Monitor release

Wait(S)
If S.V>0thenS.V :=5V-1
else S.L :=S.L + {p}; block p



signalC (on monitor condition var)
Vs signal on semaphore

signalC (on monitor condition var)
If cond not empty
g <- head of queue

ready g

Signal(S)
If S.L empty then S.V := S.V+1
else S.L :=S.L —{q}; ready q (for abitrary q)



Correctness of semaphore by monitor

* Seep 151
e Exactly the same as fig 6.1 (s 6.4)

* Note that state diagrams simplify
 Whole operations are atomic

* Check: for well-behaved program

* 4 unreachable states
* blocked-blocked (deadlock)
* signal-signal (no mutex)
» wait-blocked (deadlock coming!)
* For mutex starting with k=1, and two user processes
* The variable values are determined by the proc states



Producer-consumer

*Alg7.3
* All interesting code gathered in monitor
* Very simple user code



Immediate resumption

* So signalling proc cannot again falsify cond

* |f signal is the last op, allow proc to leave?
* How? See protected objects

* Many other choices possible
* Check what your language implements



Semaphores vs monitors: examples

* Semaphores
* Library- user returning book chooses sleeper and wakes them
* Prod-cons — each wakes the other

* Can’t tell at a glance what the semaphore is for
e Mutex? Synchronisation signal?

* Monitor

* mutex access; synchronisation by condition variables

* Library- users only contract with the library
* takes care of returns, chooses sleeper and wakes them

* Prod-cons — each only contracts with the buffer



Design issues with monitors

* A borrower has to wait (where?)

* The returner and woken up borrower
e Can be active together?
* |f not, who waits? Where?
* “Hoare semantics”(immediate resumption)
* the returner has to wait — where?
* Why? So the borrower doesn’t find book gone
* “Mesa semantics”

* Returner signals and leaves, then wake up borrower
* Who must again check if book is available



More monitor design issues

* When do you check if book is available?
 Why not right away?
 Whatever you do before that cannot change cond
* Because that is signalled by the returner

* So you can check in a cond.var ante-room
* Drop explicit signal by returner

* Then who checks cond-vars?
* The system
* check all c-v’'s whenever anyone leaves



So: protected objects

* = monitors with cond. Vars -> entry guards
 Call to entry blocks till guard is true

* No signals
e Simply check all guards whenever a user leaves



Readers and writers

¢ Alg 7.4

* Not hard to follow, but lots of detail

e Readers check for no writers

* But also for no blocked writers
* Gives blocked writers prioroty

» Cascaded release of blocked readers
e But only until next writer shows up

* No starvation for either reader or writer

e Shows up in long proof (sec 7.7, p 157)
* Read at home!



Dining philosophers again

e Alg 7.5



Protected objects

* Monitors need waitC and signalC programmed
* Protected objects combine this with queueing

* See alg 7.6 for readers-writers
* Each operation starts only when its cond is met
e Called a ”barrier”

* What happened to signalC?

* When any op exits, all barriers are checked



Protected objects (contd.)

* Seealg 7.6 (p 164, s 7.16)

* Tidies up the mess

* No separate condition variables

* Or queues for them
* Or detailed choices “immediate release”, etc.

* The simplicity of 7.6 is worth gold!
* Price: starvation possible
e Can be fixed, at small price in mess (see exercises)



Ada

e Uses protected objects
* Since the 1980’s

* though the concept was around earlier
* Thus has the cleanest shared memory model

* Also has a very good communication model
* Rendezvous

* Ada was decided carefully through the 1970s

* Open debates and process of definition

* Has fallen away because of popularity of C, etc.
* Use now seen as a proprietary secret!



Transition

* Why do we need other models?

* Advent of distributed systems
* Mostly by packages such as MPI

* Message passing interface

* But Hoare 1978

 arrived before distributed systems

* | see it as the first realisation that
e Atomic actions, critical regions, semaphores, monitors...
* Can be replaced by just I/O as primitives!



