Concurrent Programming

K. V.S. Prasad
Dept of Computer Science
Chalmers University

August —October 2016

Teaching Team

K. V. S. Prasad

Raul Pardo Jimenez
Ann Lilliestrom
Nicholas Smallbone

John Camilleri (guest for two lectures on
Erlang)

Website

e http://www.cse.chalmers.se/edu/course/TDA383

e Should be reachable from student portal
— Search on “concurrent”
— Go to their course plan
— From there to our home page

Contact

* Use Ping-Pong (go to TDA383/DIT390)
* From you to us: mail discussion forum
— Or via your course rep (next slide)

* From us to you

— Via Ping-Pong if one person or small group
— News section of Course web page otherwise

Course representatives

 Randomly chosen by admin (email addresses on
website)

— Shamsi Abdullayev - MPALG
— Breunis Blaauwendraad - Utbyte
— Herman Hornstein - TKDAT
— Olle Mansson - TKTFY
— Tove Svensson - TKDAT
e Usually we get two more from GU
* Plan to meet after Monday lecture, weeks 2, 4, 6

Practicalities

An average of two lectures per week: for schedule, see
— http://www.cse.chalmers.se/edu/course/TDA383/time_inf.html|

Rough guidelines (marks out of 100):

— Pass = >40 points, Grade 4 = >60p, Grade 5 = >80p
— To pass, must pass all labs and exam separately
Written Exam 68 points (4 hours, closed book)
Four programming labs — 32 points

— To be done in pairs

— See schedule for submission deadlines and marks
— Supervision available at announced times

Textbook

M. Ben-Ari, ”Principles of Concurrent and
Distributed Programming”, 2nd ed

Addison-Wesley 2006

Central to your study. Exam based entirely on
Chaps 1 through 9 of book.

See Ping-Pong for your classmates’ solutions to
problems from the book, and for past exams.

Other resources

Old slides (both mine and Alejandro Russo’s)
Ben-Ari’s slides with reference to the text
Language resources — Java, Erlang, Promela

Gregory R. Andrews

— Foundations of Multithreaded, Parallel, and
Distributed Programming

e Older text Recommended reading
Joe Armstrong

— Programming in Erlang
e Recommended reading

Programming Languages

* For labs
— Java (labs 1 and 2), Erlang (labs 3 and 4)

— Erlang untyped functional language with
asynchronous channels

— Tutorials on Erlang week 3
e GET STARTED NOW WITH ERLANG TUTORIALS
e For lectures and exam

— Ben-Ari’s pseudo code
e Can use Java+Erlang in exam, BUT WITH CARE

— Spin/Promela as teaching aid (ignore if you wish)
* All but Erlang supported by Ben-Ari’s textbook

Course always in transition!

We now use Java and Erlang

— Only as implementation languages in the labs
Orally graded labs

— Worked well last term

Good text book

— Sadly, still no Promela/Spin officially in course
— This year, using them informally

For discussion

— pseudo-code as in book

Plan for today

ldeas from other sciences, music and cinema
Correctness, semantics, dangers, debugging ...
State diagrams

Example: Unit Record Equipment

Radical concurrency

Parallelism in nature

 Everywhere!

— The world is a parallel place

* Physics, chemistry, biology, economics, medicine, history, football,
tennis,

— 10 million agents to simulate spread of infection
— Simulate patient at various levels
» Cannot predict what will happen, but can show what might

— And in art
* Music, cinema

* Programming may be the only field where only one
thing happens at a time

— Was never really true (interrupts, etc.)
* But education still 30 years out of date

Music

 Parallel

— Time holds everything together (“real time” in CS)

 What is held together?

— Threads (themes, motifs)
» Can be logical or physical (which instrument, which hand)
» https://www.youtube.com/watch?v=A6s490Kp6aE
» https://www.youtube.com/watch?v=Qqe0GdUpJHs

* Things that happen in time are called “events” in CS
* The themes and motifs are called “processes”

— Synchronisation is everywhere

— Harmony and counterpoint are music’s version of
“coordination”

Cinema

e Concurrent (potentially parallel)

— There is only one screen
» So stories go on (or pause) off screen

— There are cuts

* within a scene (punctuation in a story)

e and intercuts between scenes (“meanwhile”, ...)
— The priest’s voice provides a time-stamp.

* Without it, the other scenes could be “meanwhile”, but not
necessarily at the same instant

— With the trains, synchronisation is visual or audible
(phone)

Death by concurrency

The presence of death in those film clips was
not incidental — it was intended

Concurrent systems are often embedded (in
cars, planes, medical equipment, train signals)

— Get them wrong and you too can kill
* Not just in your video games, but for real

Train crash in NE India (see website)

Therac radiation therapy machine (see
website)

Debugging doesn’t work

* Concurrent systems are non-deterministic
— Don’t know who speaks first

— Don’t know who arrives first at a meeting

e SO cannot re-run

— So cannot set break points, backup and find bugs

* Then what do we do?
— Use model checkers or proof checkers

— They check spec versus implementation

Semantics

What do you want the system to do?
How do you know it does it?

How do you even say these things?
— Various kinds of logic

Build the right system (Validate the spec)
Build it right (verify that system meets spec)

Course material

Shared memory from 1965 — 1975 (semaphores,
critical sections, monitors)

— Ada got these right 1980 and 1995

— And Java got these wrong in the 1990’s!
Message passing from 1978 — 1995
— Erlang is from the 1990’s

Blackboard style (Linda) 1980’s

Good, stable stuff. What’s new?

— Machine-aided proofs since the 1980’s
— Have become easy-to-do since 2000 or so

To get started:

 What is computation?
— States and transitions
— Moore/Mealy/Turing machines

— Discrete states, transitions depend on current
state and input

 What is "ordinary” computation?
— Sequential. Why? Historical accident?

Example: the Frogs

e Slides 39 — 42 of Ben-Ari (2.35 onwards)
 Pages 37 -39 in book

History

1950’s onwards

— Read-compute-print records in parallel
— Needs timing

1960’s onward

— slow i/o devices in parallel with fast and expensive
CPU

— Interrupts, synchronisation, shared memory

Late 1960’s : timesharing expensive CPU
between users

Modern laptop: background computation from
which the foreground process steals time

How to structure all this?
Answers from the 60’s

— Each 1/O device can be a process
— What about the CPU?

* Each device at least has a "virtual process” in the CPU
— Context switching

* move next process data into CPU

* When? On time signal or “interrupt”

* How? CPU checks before each instruction

— What does each process need to know?

— What does the system need to know about each
process?

Operating Systems (60’s thru 70’s)

e Divided into kernel and other services
— which run as processes

 The kernel provides
— Handles the actual hardware

— Implements abstractions
* Processes, with priorities and communication

— Schedules the processes (using time-slicing or other
interrupts)

* A90’s terminology footnote

— When a single OS process structures itself as several
processes, these are called “threads”

Example: Unit Record Equipment

 1900’s - 1950’s — 1970’s
— Look up Wikipedia, etc.
* Typical application: payroll
— One card per employee input (200 cpm)
— Process info (100 records per min, avg)
— Print salary info or cheque (300 lpm)
— loop
read card;
process info;
print
But this is sequential. CDR waits while processing+printing
How to speed up?

Ex: URE 1

e \We said the CDR waits. Do cards wait?

— Active — passive distinction

* Where does action come from?
— Agents in nature. Why we see agents when there aren’t any.
— Animals vs plants+things

* Are “objects” in CS active? No O-O in this course.
— CDR, LPR and CPU act. How does the info move?

— “Communication and Concurrency”, Robin Milner.
 Earlier version also from CTH library, but online.

Ex: URE 2

* CDR puts contents in shared memory

— How does CPU know contents have arrived?

* By interrupt, or by timing
— Interrupt = check between instructions

— What does CDR do meanwhile?

* whole card is read and transferred as one?
* If column by column, re-visit questions.

Ex: URE 3

* CDR CPU LPR
loop loop loop
¢ := card p := f(c) paper :=p

* This is how we show parallel processes

— But we need coordination/synchronisation/timing
— CDR needs another c to read the next card into?

* |s this an internal matter for CDR, and c is all we look at?
e CDR-c—-CPU-p-LPR

— So CPU can miss a card or re-read the same one.

Ex: URE 4

. ->
CDR ¢ CPU
<-
* We try to work with signals (taps on shoulder)

— Assume that reading a card and processing it take
much longer than assigning to and from ¢, and
sending and receiving signals

Ex: URE 5

CDR CPU LPR
loop loop loop
CR? CF? LF?
LR?
c := card p :=f(c) paper :=p
CF! LF! LR!
CR!

Assuming signals are quick, and access to cand p
are unguarded (why the post office sends you a
small note to say a big parcel has arrived).

All waiting to start with — deadlock. Kick start.

Why not use time/speed throughout?

 Remember train crash (mix speed/messages)
— use speed and time throughout to design

— everyday planning is often like this
 Particularly in older, simpler machines without sensors
* For people, we also add explicit synchronisation

* For our programs, the input can come from
the keyboard or broadband

— And the broadband gets faster every few months
* So allow arbitrary speeds

Obey the rules you make!

1 For almost all of this course, we assume
single processor without real-time (so
parallelism is only potential).

2 Real life example where it is dangerous to
make time assumptions when the system is

designed on explicit synchronisation — the
train

3 And at least know the rules! (Therac).

Goals of the course

covers parallel programming too — but it will not
be the focus of this course

Understanding of a range of programming
language constructs for concurrent programming

Ability to apply these in practice to
synchronisation problems in concurrent
programming

Practical knowledge of the programming

techniques of modern concurrent programming
languages

Theoretical component

* Introduction to the problems common to
many computing disciplines:
— Operating systems
— Distributed systems
— Real-time systems

* Appreciation of the problems of concurrent
programming
— Classic synchronisation problems

The standard Concurrency model

1. What world are we living in, or choose to?

a. Synchronous or asynchronous?
b. Real-time?

c. Distributed?

2. We choose an abstraction that

a. Mimics enough of the real world to be useful

b. Has nice properties (can build useful and good
programs)

c. Can be implemented correctly, preferably easily

Concurrent? Parallel?

 Examples:
— Max

* Using handshake, broadcast
— Sort

* Using broadcast

— Eight queens
* Crossing a door, sharing a printer

Examples (make your own notes)

1. Natural examples we use (why don’t we
program like this?)
1. Largest of multiset by handshake
2. Largest of multiset by broadcast
3. Sorting children by height
2. Occurring in nature (wow!)
1. Repressilator

3. Actual programmed systems (boring)
1. Shared bank account

Some observations

1. Concurrency is simpler!
a. Don’t need explicit ordering
b. The real world is not sequential

c. Trying to make it so is unnatural and hard
a. Try controlling a vehicle!

2. Concurrency is harder!
1. many paths of computation (bank example)

2. Cannot debug because non-deterministic
so proofs needed

3. Time, concurrency, communication are issues

Terminology

 A”process” is a sequential component that
may interact or communicate with other
processes.

* A (concurrent) “program” is built out of
component processes

* The components can potentially run in
parallel, or may be interleaved on a single
processor. Multiple processors may allow
actual parallelism.

Interleaving

e Each process executes a sequence of atomic
commands (usually called “"statements”,
though | don’t like that term).

* Each process has its own control pointer, see
2.1 of Ben-Ari

* For 2.2, see what interleavings are impossible

State diagrams

* |Inslides 2.4 and 2.5, note that the state
describes variable values before the current

command is executed.

* In 2.6, note that the “statement” part is a pair,
one statement for each of the processes

 Not all thinkable states are reachable from the
start state

Scenarios

* A scenario is a sequence of states
— A path through the state diagram
— See 2.7 for an example
— Each row is a state

e The statement to be executed is in bold

Why arbitrary interleaving?

* Multitasking (2.8 is a picture of a context switch)
— Context switches are quite expensive
— Take place on time slice or I/O interrupt
— Thousands of process instructions between switches
— But where the cut falls depends on the run

* Runs of concurrent programs

— Depend on exact timing of external events
— Non-deterministic! Can’t debug the usual way!
— Does different things each time!

Arbitrary interleaving (contd.)

 Multiprocessors (see 2.9)
— If no contention between CPU’s
* True parallelism (looks like arbitrary interleaving)

— Contention resolved arbitrarily

e Again, arbitrary interleaving is the safest assumption

The counting example

e See algorithm 2.9 on slide 2.24

— What are the min and max possible values of n?

* How to say it in C-BACI, Ada and Java
—2.27 10 2.32

But what is being interleaved?

Unit of interleaving can be
— Whole function calls?

— High level statements?

— Machine instructions?

Larger units lead to easier proofs but make other
processes wait unnecessarily

We might want to change the units as we
maintain the program

Hence best to leave things unspecified

Atomic statements

* The thing that happens without interruption
— Can be implemented as high priority
* Compare algorithms 2.3 and 2.4
e Slides 2.12 to 2.17
— 2.3 can guarantee n=2 at the end
— 2.4 cannot
* hardware folk say there is a "race condition”
 We must say what the atomic statements are
— In the book, assignments and boolean conditions
— How to implement these as atomic?

What are hardware atomic actions?

Setting a register

Testing a register

Is that enough?

Think about it (or cheat, and read Chap. 3)

