a. Introduction to FP
b. Message Passing

K. V.S. Prasad
Dept of Computer Science
Chalmers University

8 and 9 Sep 2016

Questions?

Anything you want to say
— Comments, questions, stray thoughts, etc.
— Are we too fast/slow?

Labs ok?

Still waiting for textbook?

— A strange consolation - you have some time now
* The textbook is no help for Ering
* The textbook is not very strong on message passing

Please take your own notes!
— The slides are not notes, they are an AV aid

Plan for today

Intro to FP

Shared memory: recap
Chap 8: Message passing
Skipped for now

— the rest of
e Chap 3 (Critical Section)
* Chap 6 (Semaphores)
e Chap 7 (Monitors)
— And all of
e Chap 4 (Proofs)
* Chap 5 (Further algorithms for CS)

REMINDER: exercises in Chaps. 1, 2, 3,6, 7
— Try them in Promela. Use various assertions.

Shared memory problems

e Critical section (atomic actions)
— Mutex needed
— Avoid deadlock, livelock, starvation and busy
waiting
* Other examples
— Producer — consumer
— Readers and Writers

Shared memory solutions

 Semaphores

— Correctness of processes interdependent
— Not modular

 Monitors: mutex ops, and modular, but

— Need condition queues
* With explicit waitC and signalC operations

— Need immediate resumption or other discipline
* Protected objects

— Barrier entries solve monitor problems

— But can cause starvation with unfair scheduler

Monitors centralise

e Access to the data

— Natural generalisation of objects in OO, but
* With mutex
* With synchronisation conditions

* Could dump everything in the kernel

— But this centralises way too much
* SO monitors are a compromise

Protected objects

* Tidy up the mess

— No separate condition variables
e Or queues for them
* Or detailed choices “immediate release”, etc.

* The simplicity of 7.6 is worth gold!

— Price: starvation possible
— Can be fixed, at small price in mess (see exercises)

Correctness of
shared memory programs

* By state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, g2, ..)
— No deadlock

* Both blocked, no hope of release
— No starvation scenario with fair scheduler

* By invariants or other reasoning on code
— E.g., A wait will be executed

* A blocked process will be released

Why concurrency at all?

e Speed (parallelism)
* Modelling real life agents/actors/processes
* Historically

— 1/0O devices running in parallel with CPU
— Multiprogramming, programs sharing a CPU

— Time sharing
* Between people, back when they shared a CPU

Communication and Concurrency

 Shared memory is a means of communication

* Concurrent processes that don’t communicate
— Are simply leading independent lives

— Nothing much to say about them
* No deadlocks or mutex issues
* No benefits either from concurrency

e Are there other means of communication?
— Of course! Look at us!

Historical Transition

* Why did we need other models?

— Computers started talking to each other — late 60’s
* Not just to I/O devices

* Hoare 1978

— arrived before distributed systems

— | see it as the first realisation that
e Atomic actions, critical regions, semaphores, monitors...
* Can be replaced by just I/O as primitives!

* Advent of distributed systems
— Mostly by packages such as MPI

* Message passing interface

Models of Communication

* Speech = broadcast
— Synchronous communication
— Asynchronous actions (not clocked)
— Speaker autonomous

* Post or email = asynchronous channel (buffer)
— Both communication and action asynchronous
— Speaker autonomous

* Telephone = synchronous channel = 0 size buffer
— Synchronous communication and actions
— Only internal actions autonomous

Addressing

* Broadcast

— Sender and/or receiver anonymous

e Can be named (maybe) in message

* Post, email, telephone

— Receiver named (envelope, header, number)

e Sender need not be (but can)

e What is addressed?
— Processes? Channels?

What do processes

communicate or share?

Data

— Tell me what you’ve heard

Resources

— Databases —don’t want inconsistent DB

— printer —don’t want interleaved printouts
Timing signals

— Pure timing signals: empty envelopes, beeps, etc.
So expect (equivalents of) semaphores, etc.
Channels can be shared between processes

— In some languages
— But in Erlang, e.g., only one proc can input from it

Semaphore by synchronous channels

Each user:
loop
chwait => token
crit sec
chsignal <= token
Semaphore:
loop
chwait <= token
chsignal => token

1: Information flows along the arrows => and <=, so that <= means output
value, and => means input to variable.

2. Only one of contending users gets the token from chwait, and the
semaphore then waits till this user returns the token.

3. The token is just a dummy (uint type, empty envelope)

Notational quarrel with Ben-Ari

* The =>and <= have a clear logic about which way
the information flows, but

— Output can be written 5 => chan or chan <=5, which
makes it hard to keep track.

— The notation => also means “implies” in logic, so
clashed often in discussions

— The notation chan!5 and chan?x are to my mind both
clearer, and traditional. Output always has a ! and
input a ? after the channel name.

— The ! and ? Notation also goes well with a functional
notation for processes.

CS using synchronous semaphore

P: Q:

loop loop
pl: chwait => token gl: chwait => token
p2: crit sec g2: crit sec
p3: chsignal <= token g3: chsignal <= token

Mutex: p2 implies P has successfully done p1; P has the token. Then
Semaphore permits only chsignal (return token), so Q cannot get the token.

Deadlock-free: If Semaphore is busy (the token is out), either P@p2 or P@p3
or Q@qg2or Q@q3 (either P or Q has the token). So if P@pl and Q@q1, then
Semaphore has the token. It will accept chwait, from either P or Q.

Starvation: Possible, if P wins every time. A fair semaphore will ensure that
when Q repeatedly asks, it will be granted at some point.

Detour: Pure signals

* A pure (synchronisation) signal is
— A dummy variable with only one value
— Or empty envelope in the post
— Or missed call on the phone

* How to communicate for free using these calls

* Along a channel or broadcast or stored in a
shared variable

 Can be used as a timing signal saying agreed
event has happened.

Broadcast channel is a semaphore!

Each user (i):

loop

either -
ch<=i
crit sec
ch <=done

or
ch=>j
ch => done

1: Did | succeed in speaking (tjing)? If so, | enter my CS. The others can’t enter theirs.
2. Those who did not get to make their request wait till they hear another message.

3. Here the channel is used only for this semaphore. If it is used for other things too,
the losing process should test what it hears till it hears done.

Examples from the book

* Producer-consumer

— Doesn’t matter whether synch/asynch

* Matrix-multiplication

— Here, could be synchronous action : gangstepped

* Dining philosophers

— Wit

n synchronous channels only.

— Each fork behaves like a semaphore

— Bot

n deadlock and starvation seem possible!

