
Database design II

Functional Dependencies

BCNF

1

Functional dependencies (FDs)

• X → A

– ”X determines A”, ”X gives A”

– ”A depends on X”

• X is a set of attributes, A is a single

attribute

• Examples:

– code→ name

– code, period→ teacher

2

Assertions on a schema

• X → A is an assertion about a schema R

– If two tuples in R agree on the values of the

attributes in X, then they must also agree on
the value of A.

• Example: code, period→ teacher

– If two tuples in the GivenCourses relation

have the same course code and period, then
they must also have the same teacher.

3

Assertions on a domain

• X → A is really an assertion about a domain D

– Let D be the relation that is the join (along references)

of all relations in the database of the domain.

– If two tuples in D agree on the values of the attributes

in X, then they must also agree on the value of A.

• Example: code, period→ teacher

– If two tuples in the D relation (i.e. the domain) have

the same course code and period, then they must

also have the same teacher.

4

What are FDs really?

• Functional dependencies represent a special kind of

constraints of a domain – dependency constraints.

• The database we design should properly capture all

constraints of the domain.

• We can use FDs to verify that our design indeed

captures the constraints we expect, and add more

constraints to the design when needed.

5

What’s so functional?

• X → A is a (deterministic) function from X
to A. Given values for the attributes in the
set X, we get the value of A.

• Example:
– code→ name

– imagine a deterministic function f(code)
which returns the name associated with a
given code.

6

A note on syntax

• A functional dependency exists between attributes in

the same relation, e.g. in relation Courses we have FD:
code→ name

• A reference exists between attributes in two different

relations, e.g. for relation GivenCourses we have

reference:
course -> Courses.code

• Two completely different things, but with similar syntax.

Clear from context which is intended.

7

Quiz!

What are reasonable FDs for the

scheduler domain?

• Course codes and names

• The period a course is given

• The number of students taking a course

• The name of the course responsible

• The names of all lecture rooms

• The number of seats in a lecture room

• Weekdays and hours of lectures

8

Quiz: (an) answer

What are reasonable FDs for the

scheduler domain?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

9

Multiple attributes on R/LHS

• X → A,B

– Short for X → A and X → B

– If we have both X → A and X → B, we can

combine them to X → A,B.

– code, period → teacher, #students

• Multiple attributes on LHS can be crucial!

– code, period → teacher

•code → teacher

•period → teacher

10

Quiz!

• What’s the difference between the LHS of
a FD, and a key?

– both uniqely determine the values of other
attributes.

– …but a key must determine all other attributes

in a relation!

– We use FDs when determining keys of
relations (will see how shortly).

11

Example

Schedules(code, name, period, numStudents, teacher,

room, numSeats, weekday, hour)

code name per. #st teacher room #seats day hour

TDA357 Databases 3 87 Niklas Broberg HC1 126 Monday 15:15

TDA357 Databases 3 87 Niklas Broberg HC2 94 Thursday 10:00

TDA357 Databases 2 93 Graham Kemp HC4 216 Tuesday 10:00

TDA357 Databases 2 93 Graham Kemp VR 228 Friday 10:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Wednesday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Thursday 13:15

code, period→ teacher ? Yes!

12

Example (decomposed)

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

Rooms(name, #seats)

code, period→ teacher ?

Quiz: Given values for a code and a period, starting from any relation where

they appear, is it possible to reach more than one teacher value by following

keys and references?

Answer: No, so the FD constraint is properly captured.

13

Trivial FDs

• A FD is trivial if the attribute on the RHS is
also on the LHS.

– Example: course, period → course

Quiz: Is this a trivial FD?

course, period→ course, name

Shorthand for

course, period→ course (trivial)

course, period→ name (not trivial)

14

Inferring FDs

• In general we can find more FDs

– course, period, weekday → room

– room → #seats

⇒ course, period, weekday → #seats

• We will need all FDs for doing a proper

design.

15

Closure of attribute set X

• Computing the closure of X means finding
all FDs that have X as the LHS.

• If A is in the closure of X, then X → A.

• The closure of X is written X+.

16

Computing the closure

• Given a set of FDs, F, and a set of
attributes, X:

1. Start with X+ = X.

2. For all FDs Y → B in F where Y is a subset of X+,

add B to X+.

3. Repeat step 2 until there are no more FDs that

apply.

17

Quiz!

What is the closure of
{code, period, weekday}?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

{code, period, weekday}+ =

{code, period, weekday, name, #students,

teacher, hour, room, #seats}

18

Finding all implied FDs: F+

• Simple, exponential algorithm
1. For each set of attributes X, compute X+.

2. Add X → A to F+ for all A in X+ - X.

3. However, drop XY → A whenever we discover
X → A.

– Because XY → A follows from X → A.

• A simplifying trick
– If X+ = Y, then for any superset Z of X, where Z is a

subset of Y, Z+ = Y and no new FDs will be found.
• In particular, if X+ is the set of all attributes, then the

closure of all supersets of X will also be the set of all
attributes.

19

Summary – FDs so far

• X → A

– X ”determines” A, A ”depends on” X

• Constraints in domain

• Trivial FDs, combining RHSs

• Computing closures

– Attribute closures: X+

– FD set closures: F+

20

Lab Assignment

• Write a ”student portal” application in Java
– Part I: Design

• Given a domain description, design a database schema using an E-R
diagram.

– Part II: Design

• Given a domain description, find and act on the functional dependencies of

the domain to fix the schema from Part I.

– Part III: Construction and Usage

• Implement the schema from Part II in Oracle.

• Insert relevant data.

• Create views to support key operations.

– Part IV: Construction

• Create triggers to support key operations.

– Part V: Interfacing from external Application

• Write a Java application that uses the database from Part III.

21

Lab Assignment

• Each task must be completed and
approved before the next can be started.

– Submit in good time!

• Work in groups of exactly two.

– If you have compelling reasons for not being
two in a group, come talk to me.

22

Part I – E-R Modelling

• Model the database by drawing an E-R
diagram of the domain.

• Generate a database schema by

translating your diagram to relations.

23

Part I – E-R Modelling

• Hand in:

– a diagram

– a database schema

• Submission deadline: Fri, Jan 31 (23:59)

24

Finding keys

• For a relation R, any subset X of attributes of R
such that X+ contains the all attributes of R is a
superkey of R.
– Intuitively, a superkey is any set of attributes that

determine all other attributes.

– The set of all attributes is a superkey.

• A key for R is a minimal superkey.
– A superkey X is minimal if no proper subset of X is

also a superkey.
• Minimal – no subset is a key

• Minimum – the smallest, i.e. the one with the fewest number
of attributes

25

Example:
X = {code, period, weekday, hour}

is a superkey of the relation Schedules
since X+ is the set of all attributes of

Schedules. However,
Y = {code, period, weekday}

is also a superkey, and is a subset of X, so
X is not a key of Schedules. No subset of Y

is a superkey, so Y is also a key.

Schedules(code, name, period, #students,

teacher, room, #seats, weekday, hour)

26

Quiz!

What is the key of Schedules?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

Two keys exist:

{code, period, weekday}

{room, period, weekday, hour}

27

Primary keys

• There can be more than one key for the
same relation.

• We choose one of them to be the primary

key, which is the key that we actually use
for the relation.

• Other keys could be asserted through

uniqueness constraints.

– E.g. for the self-referencing relation

28

Example:

Rooms(name, #seats)

NextTo(right, left)

right -> Rooms.name

left -> Rooms.name

left unique

For NextTo we have both

• left → right

• right → left

Both left and right are keys, but we have chosen

right to be the primary key for NextTo. We can add a

constraint stating that left should be unique.

Note: The syntax for constraints is not well specified. Both

the reference syntax, as well as the uniqueness assertion,

are my suggestions only (but they’re rather good). 29

Where do FDs come from?

• ”Keys” of entities
– If code is the key for the entity Course, then all other

attributes of Course are functionally determined by
code, e.g. code → name

• Relationships
– If all courses hold lectures in just one room, then the

key for the Course entity also determines all attributes
of the Room entity, e.g.
code→ room

• Physical reality
– No two courses can have lectures in the same room

at the same time, e.g.
room, period, weekday, hour→ code

30

Make reality match theory

• In some cases reality is not suitably
deterministic. We may need to invent key

attributes in order to have a key at all.

Quiz: Give examples of this phenomenon from reality!

Social security numbers, course codes, product numbers,

user names etc.

31

How NOT to find FDs

• Do an E-R diagram, look at the entities and
many-to-one relationships, pick the proper FDs.

• FDs should be used to find more constraints,
and also to check that your diagram is correct. If
the FDs are taken from the diagram, no more
constraints will be added, and it will contain the
same errors!

Quiz: Why not?

32

Example: Scheduler domain

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

Rooms(name, #seats)

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

Quiz: Fix the
schema!

33

Scheduler domain (fixed)

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

(room, period, weekday, hour) unique

Rooms(name, #seats)

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

Add a key to
Lectures!

34

Quiz time!

What’s wrong with this schema?

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

Redundancy!

code→ name

code, period→ teacher

35

Using FDs to detect anomalies

• Whenever X → A holds for a relation R,
but X is not a key for R, then values of A

will be redundantly repeated!

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

code→ name

code, period→ teacher

36

Decomposition

• Fix the problem by decomposing Courses:

– Create one relation with the attributes from the offending FD, in
this case code and name.

– Keep the original relation, but remove all attributes from the RHS
of the FD. Insert a reference from the LHS in this relation, to the
key in the first.

Courses(code, name)

GivenCourses(code, period, teacher)

code -> Courses.code

Courses(code, period, name, teacher)

code→ name
code, period→ teacher

37

Decomposition Picture

R-X + X X +-X

R
2

R
1

R

38

Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal
Form (BCNF) if, whenever a nontrivial FD

X → A holds on R, X is a superkey of R.

– Remember: nontrivial means A is not part of X

– Remember: a superkey is any superset of a

key (including the keys themselves).

Courses(code, name)

CoursePeriods(code, period, teacher)

39

Next Lecture

BCNF decomposition

3NF

40

