
Databases Exam HT2016 Solution

Solution 1a

Solution 1b

Trainer(ssn)

Pokemon(ssn, name)

ssn -> Trainer.ssn

Club(name, city, street , streetnumber)

MemberOf(ssn, name, city)

ssn -> Trainer.ssn

(name , city) -> Club.(name , city)

Fight(ssn1, name1, ssn2, name2 , name , city , time , outcome)

(ssn1 , name1) -> Pokemon .(ssn , name)

(ssn2 , name2) -> Pokemon .(ssn , name)

(name , city) -> Club.(name , city)

1 of 8

Solution 2a

(1) star , name → * (all other attributes)

(2) star , position → * (all other attributes)

(3) star , distance → * (all other attributes)

(4) radius → area

(5) area → radius

(6) water → land

(7) land → water

(8) mass , radius → gravity

(9) mass , gravity → radius

(10) gravity , radius → mass

(11) atmosphere , oxygen → otherGas

(12) atmosphere , otherGas → oxygen

(13) oxygen , otherGas → atmosphere

Solution 2b

These 3 subsets of attributes of the Planets relation are keys:

{star , name}

{star , position}

{star , distance}

A key is a minimal superkey. Each of these subsets is a superkey of the relation Planets because their closure
is the full set of attributes of Planets. In addition, each of these superkeys is minimal because there is no subset
of attributes that is also a superkey.

Solution 2c

Functional dependencies 4-13 violate BCNF (all FDs except the first 3), because the left-hand side of each of
these FDs is not a superkey of the Planets relation.

2 of 8

Solution 2d

Step 1

FD 4 violates BCNF, so we create a new relation Areas and remove the area attribute from the Planets
relation. After this step, the violation of FD 5 is automatically resolved.

Planets (* - area)

remaining FDs: 1-3, 6-13

Areas(radius , area)

radius -> Planets.radius

(4) radius → area

(5) area → radius

Step 2

FD 6 violates BCNF, so we create a new relation Surfaces and remove the land attribute from the Planets
relation. After this step, the violation of FD 7 is automatically resolved.

Planets (* - area - land)

remaining FDs: 1-3, 8-13

Areas(radius , area)

radius -> Planets.radius

(4) radius → area

(5) area → radius

Surfaces(water , land)

water -> Planets.water

(6) water → land

(7) land → water

Step 3

FD 8 violates BCNF, so we create a new relation Gravities and remove the gravity attribute from the Planets
relation. After this step, the violation of FD 9 and 10 is automatically resolved.

Planets (* - area - land - gravity)

remaining FDs: 1-3, 11-13

Areas(radius , area)

radius -> Planets.radius

(4) radius → area

(5) area → radius

Surfaces(water , land)

water -> Planets.water

(6) water → land

(7) land → water

Gravities(mass, radius , gravity)

mass , radius -> Planets .(mass , radius)

(8) mass , radius → gravity

(9) mass , gravity → radius

(10) gravity , radius → mass

3 of 8

Step 4

FD 11 violates BCNF, so we create a new relation Atmospheres and remove the otherGas attribute from the
Planets relation. After this step, the violation of FD 11 and 12 is automatically resolved.

Planets(name, star, position , distance , radius , water , mass , atmosphere ,

oxygen)

(1) star , name → * (all other attributes)

(2) star , position → * (all other attributes)

(3) star , distance → * (all other attributes)

Areas(radius , area)

radius -> Planets.radius

(4) radius → area

(5) area → radius

Surfaces(water , land)

water -> Planets.water

(6) water → land

(7) land → water

Gravities(mass, radius , gravity)

mass , radius -> Planets .(mass , radius)

(8) mass , radius → gravity

(9) mass , gravity → radius

(10) gravity , radius → mass

Atmospheres(atmosphere , oxygen , otherGas)

atmosphere , oxygen -> Planets .(atmosphere , oxygen)

(11) atmosphere , oxygen → otherGas

(12) atmosphere , otherGas → oxygen

(13) oxygen , otherGas → atmosphere

4 of 8

Solution 3a

CREATE TABLE Planets(

star TEXT NOT NULL ,

name TEXT NOT NULL ,

distance FLOAT NOT NULL CHECK(distance > 0),

mass FLOAT NOT NULL CHECK(mass > 0),

atmosphere BOOLEAN NOT NULL ,

oxygen FLOAT NOT NULL CHECK((oxygen = 0 and not atmosphere) OR (

atmosphere AND oxygen >= 0 AND oxygen <= 100)),

water FLOAT NOT NULL CHECK(water >= 0 AND water <= 100),

PRIMARY KEY(star , name),

UNIQUE(star , distance)

);

Solution 3b

SELECT COUNT (*) FROM Planets WHERE

distance > (SELECT distance FROM Planets WHERE

star=’Kerbol ’ AND name=’Duna’);

Solution 3c

(SELECT star , name , ’habitable ’ FROM Planets WHERE

distance >= 100 AND distance <= 200 AND

atmosphere AND oxygen >= 15 AND oxygen <= 25 AND

water > 0)

UNION

(SELECT star , name , ’uninhabitable ’ FROM Planets WHERE NOT(

distance >= 100 AND distance <= 200 AND

atmosphere AND oxygen >= 15 AND oxygen <= 25 AND

water > 0));

or

WITH habitables AS (SELECT star , name FROM planets WHERE

distance >= 100 AND distance <= 200 AND

atmosphere AND oxygen >= 15 AND oxygen <= 25 AND

water > 0)

SELECT star , name , ’habitable ’ FROM Planets WHERE

(star , name) IN (SELECT star , name from habitables)

UNION

SELECT star , name , ’unhabitable ’ FROM Planets WHERE

(star , name) NOT IN (SELECT star , name from habitables);

or

SELECT star , name , CASE WHEN

distance >= 100 AND distance <= 200 AND

atmosphere AND oxygen >= 15 AND oxygen <= 25 AND

water > 0

THEN ’habitable ’ ELSE ’uninhabitable ’ END

FROM Planets;

5 of 8

Solution 4a

The query in SQL:

SELECT star , SUM(mass) AS totalMass FROM Planets WHERE atmosphere GROUP BY

star HAVING COUNT (*) > 5;

The query in relational algebra:
πstar,totalMass(σatmosphere&planetcount>5(γstar,COUNT (∗)→planetcount,SUM(mass)→totalMass(Planets)))

Solution 4b

SELECT position , MAX(gravity) AS maxg

FROM (P NATURAL JOIN G)

GROUP BY position

ORDER BY maxg;

6 of 8

Solution 5a

CREATE VIEW PromotionSummary AS

SELECT category , MIN(price) AS minprice , MAX(price) AS maxprice FROM

Books

WHERE promoted

GROUP BY category;

Solution 5b

CREATE OR REPLACE FUNCTION demoteBooks () RETURNS TRIGGER AS $$

BEGIN

UPDATE Books SET promoted = False WHERE category = OLD.category;

END

$$ LANGUAGE ’plpgsql ’;

CREATE TRIGGER demoteBooksTrigger INSTEAD OF DELETE ON PromotionSummary

FOR EACH ROW

EXECUTE PROCEDURE demoteBooks ();

it is acceptable to shorten this to:

demoteBooks () → UPDATE Books SET promoted = False WHERE category = OLD.

category;

CREATE TRIGGER demoteBooksTrigger INSTEAD OF DELETE ON PromotionSummary

FOR EACH ROW

EXECUTE PROCEDURE demoteBooks ();

7 of 8

Solution 6a

Alice has too many privileges, since she does not need to read the password in the Users table, nor the LogBook
entries. The minimally required set of permissions is:

GRANT SELECT(id , name) ON Users TO Alice;

GRANT SELECT(id , loggedin) ON UserStatus TO Alice;

GRANT INSERT(id , timestamp , name) ON LogBook TO Alice;

Solution 6b

Yes this code contains an SQL injection vulnerability.
The vulnerability can be removed by either correctly sanitizing or escaping the data in the userinput variable.

A better solution is to use a PreparedStatement with placeholder:

...

String query = "SELECT * FROM UserStatus WHERE id = ?";

PreparedStatement stmt = conn.prepareStatement(query);

stmt.setString(1, userinput);

ResultSet rs = stmt.executeQuery ();

...

Solution 6c

The transaction is vulnerable to “non-repeatable read” and “phantom read” interferences, because the READ

COMMITTED transaction isolation level does not protect against them. The stronger REPEATABLE READ isolation
level is not sufficient because it still allows phantom reads. Only the SERIALIZABLE isolation level is sufficient,
since it protects against dirty read, non-repeatable read and phantom read.

8 of 8

