Advanced Functional Programming TDA342/DIT260

> Tuesday, March 15, 2016, Hörsalsvägen (yellow brick building), 8:30-12:30. (including example solutions to programming problems)

Alejandro Russo, tel. 0317726156

- The maximum amount of points you can score on the exam: 60 points. The grade for the exam is as follows:
Chalmers: 3: $24-35$ points, 4: 36-47 points, 5: $48-60$ points.
GU: Godkänd $24-47$ points, Väl godkänd $48-60$ points
PhD student: 36 points to pass.
- Results: within 21 days.
- Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes - a "summary sheet". These notes may be typed or handwritten. They may be from any source. If this summary sheet is brought to the exam it must also be handed in with the exam (so make a copy if you want to keep it).

- Notes:

- Read through the paper first and plan your time.
- Answers preferably in English, some assistants might not read Swedish.
- If a question does not give you all the details you need, you may make reasonable assumptions. Your assumptions must be clearly stated. If your solution only works under certain conditions, state them.
- Start each of the questions on a new page.
- The exact syntax of Haskell is not so important as long as the graders can understand the intended meaning. If you are unsure just put in an explanation of your notation.
- Hand in the summary sheet (if you brought one) with the exam solutions.
- As a recommendation, consider spending around 1 h 20 minutes per exercise. However, this is only a recommendation.
- To see your exam: by appointment (send email to Alejandro Russo)

Figure 1: Functors

Problem 1: (Functors) As its name implies, a binary tree is a tree with a two-way branching structure, i.e., a left and a right sub tree. In Haskell, such trees can be defined as follows.

```
data Tree \(a\) where
    Leaf :: \(a \rightarrow\) Tree \(a\)
    Node :: Tree \(a \rightarrow\) Tree \(a \rightarrow\) Tree \(a\)
```

a) Show that Tree a is a functor. For that, you should provide an instance for the Functor type-class and prove that fmap for finite trees, i.e., fmap :: $(a \rightarrow b) \rightarrow$ Tree $a \rightarrow$ Tree b, fulfills the laws for functors - see Figure 1.

```
instance Functor Tree where
    fmap \(f(\) Leaf a) \(\quad=\) Leaf \((f a)\)
    fmap \(f(\) Node t1 t2 \()=\operatorname{Node}(\) fmap \(f t 1)(\) fmap \(f t 2)\)
```

Important: Assume that f and g are total, i.e., they do not raise any errors or loop indefinitely when applied to an argument. If your proof is by induction, you should indicate induction on what (e.g., in the length of the list). Justify every step in your proof.
$\underline{\text { Proofs by induction on the height of the tree }}$
-- Identity law
-- Base case
fmap id (Leaf a) \equiv
-- by definition fmap. 0
Leaf (id a) \equiv
-- by definition of id
Leaf $a \quad \equiv$
-- by definition of id
id (Leaf a)
-- Inductive case
fmap id (Node l r) $\quad \equiv$
-- by definition of fmap. 1
Node (fmap id l) (fmap id r) \equiv
-- by I.H.
Node (id l) (id r) \equiv
-- by definition of id
Node lr \equiv
-- by definition of id
id (Node l r)
-- Map fusion
-- Base case
fmap $(f \circ g)($ Leaf $a) \equiv$
-- by definition fmap. 0
Leaf $((f \circ g) a) \quad \equiv$
-- by definition of .
Leaf $(f(g a)) \quad \equiv$
-- by definition of fmap. 0
fmap $f($ Leaf $(g a)) \equiv$
-- by definition of fmap. 0
fmap $f(f m a p g($ Leaf $a))$
-- Inductive case
fmap $(f \circ g)($ Node l r) \equiv
-- by definition of fmap. 1
Node $(f m a p(f \circ g) l)(f m a p(f \circ g) r) \equiv$
-- by I.H.
Node $(f m a p f(f m a p g l))(f m a p f(f m a p g r)) \equiv$
-- by definition of fmap. 1
fmap $f($ Node $(f m a p g l)(f m a p g r)) \equiv$
-- by definition of fmap. 1
fmap $f($ fmap $g($ Node l r $)$)
b) As with lists, it is also useful to "fold" over trees. Given a tree t with elements $e_{1}, e_{2}, \ldots, e_{n}$ and an operator \oplus, folding over the tree t with operator \oplus intuitively means to intercalate the operator among the elements of the tree, i.e., $e_{1} \oplus e_{2} \oplus e_{3} \oplus \ldots \oplus e_{n}$. For simplicity, we assume that the operator \oplus is always associative. We call the function implementing folding over trees foldT.

$$
\text { foldT }::(a \rightarrow a \rightarrow a) \rightarrow \text { Tree } a \rightarrow a
$$

By using foldT, we can now express a bunch of useful functions on trees.

$$
\begin{gathered}
\begin{array}{l}
P_{1} \\
\text { height_tree }=\text { fold } T(\lambda l r \rightarrow \text { max l } r+1) \circ \text { fmap }(\text { const } 0)
\end{array} \\
\qquad P_{3} \\
\text { leaves }=\text { fold } T(+) \circ \operatorname{fmap}(\lambda x \rightarrow[x])
\end{gathered}
$$

Program P_{1} computes the height of a tree. Program P_{2} sums all the numbers in a tree. Program P_{3} extracts all the elements of a tree.
Your task is to implement fold T.

$$
\begin{aligned}
& \text { foldT }::(a \rightarrow a \rightarrow a) \rightarrow \text { Tree } a \rightarrow a \\
& \text { foldT op }(\text { Leaf a })=a \\
& \text { foldT op }(\text { Node l } r)=(\text { foldT op } l) \text { 'op' (foldT op } r)
\end{aligned}
$$

c) There is a relation between mapping functions over trees' leaves and lists. More specifically, we have the following equation for finite and well-defined trees.

$$
\text { map } f \circ \text { leaves } \equiv \text { leaves } \circ \text { fmap } f
$$

It is the same to first extract the leaves and then map the function (left-hand side), as it is to map the function first and then extracting the leaves (right-hand side).
Your task is to prove that the equation holds.
You can assume the following properties and definition for this exercise and the rest of the exam!

$\begin{aligned} & (.) \\ & (f \circ g) x=f(g x) \end{aligned}$	Assoc. (.)$(f \circ g) \circ z=f \circ(g \circ z)$		$\begin{aligned} & \text { (ID LEFT) } \\ & i d \circ f=f \end{aligned}$	$\begin{aligned} & \text { (ID RIGHT) } \\ & f \circ i d=f \end{aligned}$	
(cons.0)	((+).0)		((+).1)		
$x:[]=[x]$	[]$+y s=y s$		$(x: x s)+y s=x:(x s+y s)$		
(Assoc. (+))		(map.0)		(map.1)	
$x s+(y s+z s) \equiv($	+ ys) \#zs	$\operatorname{map} f[]=[]$		$f(x: x s)=$	$x:$

You cannot assume any property that relates (+), map, and fmap - if you need such properties, you should prove them too!
-- Auxiliary lemma
$\operatorname{map} f(x s+y s) \equiv \operatorname{map} f x s+\operatorname{map} f y s$
-- Proof by induction on the length of xs
-- Base case
$\operatorname{map} f([]+y s) \equiv$
-- (++). 0
map f ys \equiv
-- (++). 0
[] + map f ys \equiv
-- map. 0
$\operatorname{map} f[]+\operatorname{map} f y s$
-- Inductive case
$\operatorname{map} f((x: x s)+y s) \equiv$
-- map. 1
$f x: \operatorname{map} f(x s+y s) \quad \equiv$
-- I.H.
$f x:($ map $f x s+m a p f y s) \equiv$
-- (++). 1
$(f x: m a p f x s)+m a p f y s \equiv$

$$
\text { -- map. } 1
$$

$\operatorname{map} f(x: x s)+\operatorname{map} f y s$
-- Proof by induction on the height of trees
map $f \circ$ leaves \equiv leaves \circ fmap f
-- Base case
$\operatorname{map} f($ leaves $($ Leaf $a)) \quad \equiv$ -- Def. leaves
$\operatorname{map} f($ foldT $(+)(\operatorname{fmap}(\lambda x \rightarrow[x])($ Leaf $a))) \equiv$
-- Def. fmap on Leaf
$\operatorname{map} f($ foldT $(+)($ Leaf $[a])) \quad \equiv$
-- Def. foldT
$\operatorname{map} f[a] \quad \equiv$ -- Def (:)
$\operatorname{map} f(a:[]) \quad \equiv$
-- Def map. 1
$f a: \operatorname{map} f[] \quad \equiv$
-- Def. map. 0
$f a:[]$
-- $\operatorname{Def}(:)$
$\left[\begin{array}{ll}f & a\end{array}\right]$
-- Def. leaves
leaves $($ Leaf $(f a)) \quad \equiv$
-- Def. fmap
leaves (fmap f(Leaf a))
-- Inductive case
$\operatorname{map} f$ (leaves (Node lr)) \equiv -- Def. leaves
$\operatorname{map} f($ foldT $(+)($ Node $l r)) \quad \equiv$
-- Def. foldT
$\operatorname{map} f(($ fold $T(+) l)+($ fold $T(+) r)) \equiv$ -- Auxiliary lemma
$\operatorname{map} f($ fold $T(+) l)+\operatorname{map} f($ foldT $(+) r) \equiv$ -- Def. leaves
map $f($ leaves $l)+\operatorname{map} f$ (leaves $r) \quad \equiv$ -- IH
leaves $(f m a p f l)+$ leaves $(f m a p f r) \equiv$ -- Def. leaves
foldT (H) (fmap f l) H foldT $(+$) $($ fmap $f r) \equiv$ -- Def. foldT
foldT (H) (Node (fmap f l) $($ fmap $f r)) \quad \equiv$
-- Def. leaves
leaves (Node (fmap f l) (fmap $f r)$) \equiv
-- Def. fmap
leaves (fmap f(Node l r))
class Monad manhere
return $:: a \rightarrow m a$
$(\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b$

Left Identity return $x \gg f \equiv f x$

Right Identity

$m \gg$ return $\equiv m$

AsSociativity (x DOES NOT APPEAR IN m_{2} AND m_{3})
$\left(m \gg k_{1}\right) \gg k_{2} \equiv m \gg\left(\lambda x \rightarrow k_{1} x \gg k_{2}\right)$

Figure 2: Monads

Problem 2. (Monads) During the lectures we said that a data type m is a monad if we can define the primitives return and (>>), and that m fulfills the monadic laws - see Figure 2. There is, however, an alternative interface for monads described as follows.

class MonadAlternative m where return ${ }^{\prime}:: a \rightarrow m a$ join $\quad:: m\left(\begin{array}{ll}m a\end{array}\right) \rightarrow m a$ fmap $\quad::(a \rightarrow b) \rightarrow m a \rightarrow m b$	IDENTITY MAP FUSION fmap $i d m \equiv m \quad f m a p(f \circ g) \equiv f m a p f(f m a p g)$
A_{1} fmap $f \circ r e t u r n^{\prime} \equiv$ return ${ }^{\prime} \circ f$	A_{2} A_{3} join \circ fmap return ${ }^{\prime} \equiv i d$ join \circ return ${ }^{\prime} \equiv i d$
A_{4} join \circ fmap join \equiv join \circ join	$\begin{aligned} & A_{5} \\ & \text { join } \circ f m a p(f m a p f) \equiv f m a p f \circ j o i n \end{aligned}$

This interface requires m to be a functor and introduces an operation called join. Furthermore, return', join, and fmap are required to obey various different laws.
a) Your task consists of showing that the alternative interface is enough to implement return and (\gg). In other words, if you define return', fmap, and join for certain data type m, then you can show that m is an instance of the type-class Monad in Haskell. You should provide the following type-class instance:

```
instance MonadAlternative \(m \Rightarrow\) Monad \(m\) where
    return \(=\ldots\)
    \((\gg)=\ldots\)
instance MonadAlternative \(m \Rightarrow\) Monad \(m\) where
    return \(=\) return \({ }^{\prime}\)
    \(m \gg k=j\) join \((\) fmap \(k m)\)
```

b) Assuming the laws for the alternative monadic interface, you should show that the implementation that you gave in the previous question is indeed a monad in the traditional sense, i.e. it fulfills the laws from Figure 2.
-- Left identity
return $x \gg f \quad \equiv$
-- Def. return
join $($ fmap $f($ return $x)) \equiv$
-- Def. return
join $\left(\right.$ fmap $f\left(\right.$ return $\left.\left.^{\prime} x\right)\right) \equiv$
-- Def. of (.)
join $\left(\left(f m a p f \circ r e t u r n^{\prime}\right) x\right) \equiv$ -- A1
join $\left(\left(\right.\right.$ return $\left.\left.^{\prime} \circ f\right) x\right) \equiv$
-- Def (.)
$\left(j\right.$ oin $\left.\circ r^{2}+u^{\prime} \circ f\right) x \quad \equiv$
-- A3
$(i d \circ f) x \quad \equiv$ -- Def. id
$f x$
-- Right identity
$m \gg$ return $\quad \equiv$
-- Def. bind
join (fmap return m) \equiv
-- Def. return
join (fmap return' m) \equiv
-- Def. (.)
(join \circ fmap return') $m \equiv$
-- A2
id $m \quad \equiv$
-- Def. id
m
-- Associativity
$m \gg=\left(\lambda x \rightarrow k_{1} x \gg k_{2}\right) \quad \equiv$
-- Def. bind
join $\left(f m a p ~\left(\lambda x \rightarrow k_{1} x \gg k_{2}\right) m\right) \quad \equiv$
-- Def. bind
join $\left(f m a p ~\left(\lambda x \rightarrow\right.\right.$ join $\left.\left.\left(f m a p ~ k_{2}\left(k_{1} x\right)\right)\right) m\right) \quad \equiv$
-- Def. (.)
join $\left(\right.$ fmap $\left(\lambda x \rightarrow\left(\right.\right.$ join \circ fmap $\left.\left.\left.k_{2} \circ k_{1}\right) x\right) m\right) \equiv$
-- Eta-contraction
join $\left(\right.$ fmap $\left(\right.$ join \circ fmap $\left.\left.k_{2} \circ k_{1}\right) m\right) \quad \equiv$
-- Map fusion
join $\left(f m a p\right.$ join $\left.\left(f m a p\left(f m a p ~ k_{2} \circ k_{1}\right) m\right)\right) \quad \equiv$
-- Map fusion
join (fmap join (fmap (fmap $\left.\left.k_{2}\right)\left(f m a p ~ k_{1} m\right)\right) ~ \equiv$ -- Def (.)
$($ join $\circ f$ map join $)\left(\right.$ fmap $\left(\right.$ fmap $\left.\left._{2}\right)\left(f m a p ~ k_{1} m\right)\right) \equiv$ -- A4
$($ join \circ join $)\left(\right.$ fmap $\left.\left.\left(f m a p ~ k_{2}\right)\left(f m a p k_{1} m\right)\right)\right) \quad \equiv$ -- Def (.)
join $\left(\right.$ join $\left(\right.$ fmap $\left.\left.\left(f m a p ~ k_{2}\right)\left(f m a p ~ k_{1} m\right)\right)\right) \quad \equiv$ -- Def (.)
join $\left(\left(\right.\right.$ join $\left.\left.\circ f m a p\left(f m a p ~ k_{2}\right)\right)\left(f m a p k_{1} m\right)\right) \quad \equiv$ -- A5
join $\left(\left(\right.\right.$ fmap $k_{2} \circ$ join $\left.)\left(f m a p ~ k_{1} m\right)\right) \quad \equiv$ -- Def (.)
join $\left(\right.$ fmap $k_{2}\left(\right.$ join $\left(\right.$ fmap $\left.\left.\left.k_{1} m\right)\right)\right) \quad \equiv$
-- Def. bind
$\left(\right.$ join $\left(\right.$ fmap $\left.\left.k_{1} m\right)\right) \gg=k_{2} \quad \equiv$
-- Def. bind
$\left(m \gg k_{1}\right) \gg k_{2}$

Problem 3: (EDSL) Information-flow control (IFC) is a promising technology to guarantee confidentiality of data when manipulated by untrusted code, i.e. code written by someone else. In IFC, data gets classified either as public (low) or secret (high), where public information can flow into secret entities but not vice versa. We encode the sensitivity of data as abstract data types, and the allowed flows of information in the type-class CanFlowTo - see Figure 3.

To build secure programs which do not leak secrets, we build a small EDSL in Haskell with two core concepts: labeled values and secure computations. Labeled values are simply data tagged with a security level indicating its sensitivity. For example, a weather report is a public piece of data, so we can model it as a public labeled string weather_report :: Labeled L String. Sim-

Figure 3: Allowed flows of information ilarly, a credit card number is sensitive, so we model it as a secret integer cc_number :: Labeled H Integer.

A secure computation is an entity of type MACla, which denotes a computation that handles data at sensitivity level l and produces a result (of type a) of this level. In order to remain secure, secure computations can only observe data that "can flow to" the computation (see primitive unlabel below), and can only create labeled values provided that information from the computation "can flow to" the newly created labeled value (see primitive label below). We describe the API for the EDSL in Figure 4, and provide a deep-embedded implementation for the API in Figure 5.
a) Your task is to take the implementation in Figure 5 and obtain an "intermediate embedding" by removing Bind from the MAC la data type. As a result, runMAC will no longer run Bind; instead, the defintion of (\gg) will change. After your modifications, it is important to show that you can faithfully implement the whole EDSL API.

Important: If you alter the definition of $M A C l a$, or any other function in the deepembedded implementation, you need to show that your modifications are correct by deriving them.

Help: You can assume that runMAC $(m \gg f) \equiv r u n M A C m \gg r u n M A C \circ f$

```
data MAC \(l a\) where
    Label \(\quad::\left(l^{\prime}\right.\) CanFlowTo‘ \(\left.l^{\prime}\right) \Rightarrow\) Labeled \(l^{\prime} a \rightarrow\) MAC \(l\left(\right.\) Labeled \(\left.l^{\prime} a\right)\)
    Unlabel \(::\left(l^{\prime}\right.\) ‘CanFlowTo‘ \(\left.l\right) \Rightarrow\) Labeled \(l^{\prime} a \rightarrow\) MAC \(l\) a
    JoinBind \(::\left(l^{\prime}\right.\) CanFlowTo \(\left.{ }^{\prime} l^{\prime}\right) \Rightarrow\) MAC \(l^{\prime} a\)
        \(\rightarrow\left(\left(\right.\right.\) Labeled \(\left.l^{\prime} a\right) \rightarrow\) MAC l b)
    \(\rightarrow M A C l b\)
```

 Return :: \(a \rightarrow\) MAC la

-- Types

newtype Labeled la
data MACla
-- Labeled values
label $\quad::\left(l^{\prime}\right.$ CanFlowTo‘ $\left.l^{\prime}\right) \Rightarrow a \rightarrow$ MAC $l\left(\right.$ Labeled l^{\prime} a)
unlabel $::\left(l^{\prime}\right.$ ‘CanFlowTo‘ $\left.l\right) \Rightarrow$ Labeled $l^{\prime} a \rightarrow$ MAC la
-- MAC monad
return $:: a \rightarrow M A C l a$
$(\gg) \quad:: M A C l a \rightarrow(a \rightarrow M A C l b) \rightarrow M A C l b$
joinMAC $::\left(l^{‘}\right.$ CanFlowTo‘ $\left.l^{\prime}\right) \Rightarrow$ MAC $l^{\prime} a \rightarrow$ MAC $l\left(\right.$ Labeled $\left.l^{\prime} a\right)$
-- Run function
runMAC :: MAC la \rightarrow IO a

Figure 4: EDSL API
-- Types
newtype Labeled $l a=$ MkLabeled a
data MAC $l a$ where
Label $::\left(l^{‘}\right.$ CanFlowTo‘ $\left.l^{\prime}\right) \Rightarrow$ Labeled $l^{\prime} a \rightarrow$ MAC $l\left(\right.$ Labeled $\left.l^{\prime} a\right)$
Unlabel :: (l^{\prime} 'CanFlowTo‘ $\left.l\right) \Rightarrow$ Labeled $l^{\prime} a \rightarrow$ MAC l a
Join $\quad::\left(l^{‘} C a n F l o w T o^{‘} l^{\prime}\right) \Rightarrow M A C l^{\prime} a \rightarrow$ MAC $l\left(\right.$ Labeled $\left.l^{\prime} a\right)$
Return :: $a \rightarrow$ MAC la
Bind :: MAC la $\rightarrow(a \rightarrow$ MAC $l b) \rightarrow$ MAC $l b$
-- Labeled values
label $=$ Label \circ MkLabeled
unlabel = Unlabel
-- MAC operations
joinMAC = Join
instance Monad (MAC l) where
return $=$ Return
$(\gg)=$ Bind
-- Run function

```
runMAC (Label lv) \(\quad=\) return \(l v\)
runMAC \((\) Unlabel \((\) MkLabeled \(v))=\) return \(v\)
runMAC \((\) Join mac_a) \(=\) runMAC mac_a \(\gg\) return \(\circ\) MkLabeled
runMAC (Return a) = return a
runMAC \((\) Bind mac f) \(\quad=\operatorname{runMAC}(\) mac \(\gg=f)\)
```

Figure 5: Deep-embedded implemention
-- joinMAC
joinMAC mac_h = JoinBind mac_h Return
-- Implementing bind
instance Monad (MAC l) where
return $=$ Return
Label lv $\quad \gg f=f l v$
Unlabel $($ MkLabeled $v) \gg f=f v$
JoinBind mac_h $k \quad \gg f=$ JoinBind mac_h $(\lambda l v \rightarrow k l v \gg f)$
Return $x \quad \gg f=f x$
-- Derivation for JoinBind
JoinBind mac_h $k \gg f$
-- definition of JoinBind
$($ Join mac_h $\gg k) \gg f$
-- associativity of bind
Join mac_h > $(\lambda l v \rightarrow k l v \gg f)$
-- definition of JoinBind
JoinBind mac_h $(\lambda v \rightarrow k l v \gg f)$

$$
\begin{aligned}
\text { runMAC }(\text { Label lv }) & =\text { return lv } \\
\text { runMAC }(\text { Unlabel }(\text { MkLabeled } v)) & =\text { return } v \\
& =\text { return } a \\
\text { runMAC }(\text { Return a }) & \\
\text { runMAC }(\text { JoinBind mac_h } k) & =\text { runMAC mac_ } h \gg \text { runMAC } \circ k \circ \text { MkLabeled }
\end{aligned}
$$

-- Derivation for runMAC for JoinBind
runMAC (JoinBind mac_h k)
-- definition of JoinBind
runMAC $($ Join mac_h $\gg k)$
-- property of runMAC and bind
runMAC $($ Join mac_h $) \gg r$ runMAC $\circ k$
-- definition runMAC for Join from before
$($ runMAC mac_h \gg return $\circ M k$ Labeled $) \gg \operatorname{runMAC\circ k}$
-- associativity law for monads
runMAC mac_h $\gg(\lambda x \rightarrow($ return \circ MkLabeled $) x \gg r u n M A C \circ k)$
-- Definition of . and application
runMAC mac_h > $(\lambda x \rightarrow$ return $(M k L a b e l e d x) \gg r \operatorname{runMAC} \circ k)$
-- Left identity
runMAC mac_h $\gg(\lambda x \rightarrow($ runMAC $\circ k)($ MkLabeled $x))$
-- definition of (.)
runMAC mac_h>>($\lambda x \rightarrow($ runMAC $\circ k \circ$ MkLabeled $) x)$
-- eta-contraction
runMAC mac_h \gg runMAC $\circ k \circ$ MkLabeled
b) We would like to add the function output to the EDSL in order to print out messages. Ideally, we will have two output channels, one for public data and one for secret values. However, for simplicity, we assume that we have only one output channel: the screen. To mimic having two output channels, however, we will pre-append some text to indicate on which channel data is being sent. See the functions add_location and print_cc below.

$$
\begin{aligned}
& \text {-- outputting in a public channel } \\
& \text { add_location }:: \text { Labeled } L \text { String } \rightarrow M A C L() \\
& \text { add_location lstr }=\text { do } \\
& \text { str } \leftarrow \text { unlabel lstr } \\
& \text { msg } \leftarrow \text { label }(\text { str }+ \text { "Gothenburg" }) \\
& \quad:: M A C L(\text { Labeled } L \text { String }) \\
& \text { output msg }
\end{aligned}
$$

-- outputting in a secret channel
print_cc :: Labeled H Int \rightarrow MAC H ()
print_cc lcc = do
number \leftarrow unlabel lcc
$m s g \leftarrow$ label ("CC number " + show number)
:: MAC H (Labeled H String) output msg

If we call add_location with a weather report, then it prints out a message in the public channel.
$>$ let weather $=$ MkLabeled "Sunny, 31 degrees, " :: Labeled L String
in runMAC (add_location weather)
public channel : Sunny, 31 degrees, Gothenburg
By contrast, if we call print_cc with a credit card number, then it sends the credit card digits to the secret channel.
$>$ let cc_number $=$ MkLabeled 1234 :: Labeled H Int
in runMAC (print_cc cc_number)
private channel: CC number 1234

Observe that the implementation of output depends on the type of the labeled value taken as argument, i.e. output is overloaded. Your task is to extend the definitions of MAC la, (\gg), and runMAC to include the primitive output in the EDSL.

```
class TermLevel l where
    term :: Labeled l a Level
data Level = Public | Secret
instance TermLevel L where
    term _ = Public
instance TermLevel H where
    term _ = Secret
data MACla}\mathrm{ where
    Output :: TermLevel l }=>\mathrm{ Labeled l String }->\mathrm{ MAC l ()
instance Monad (MAC l) where
```

Output $l v \gg f=f()$
runMAC $($ Output lv@ $($ MkLabeled $m s g))=$ case term $l v$ of
Public \rightarrow putStrLn "public channel:" \gg putStrLn msg Secret \rightarrow putStrLn "secret channel:" \gg putStrLn msg

